001     860706
005     20210130000603.0
024 7 _ |a 10.1093/brain/awz007
|2 doi
024 7 _ |a 0006-8950
|2 ISSN
024 7 _ |a 1460-2156
|2 ISSN
024 7 _ |a pmid:30753324
|2 pmid
024 7 _ |a WOS:000512724900026
|2 WOS
024 7 _ |a altmetric:55253088
|2 altmetric
037 _ _ |a FZJ-2019-01371
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Hammes, Jochen
|b 0
245 _ _ |a Dopamine metabolism of the nucleus accumbens and fronto-striatal connectivity modulate impulse control
260 _ _ |a Oxford
|b Oxford Univ. Press
|c 2019
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1551881232_1163
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Impulsive-compulsive behaviours like pathological gambling or hypersexuality are a frequent side effect of dopamine replacement therapy in patients with Parkinson’s disease. Multiple imaging studies suggest a significant reduction of presynaptic dopamine transporters in the nucleus accumbens to be a predisposing factor, reflecting either a reduction of mesolimbic projections or, alternatively, a lower presynaptic dopamine transporter expression per se. Here, we aimed to test the hypothesis of fewer mesolimbic projections as a risk factor by using dopamine synthesis capacity as a proxy of dopaminergic terminal density. Furthermore, previous studies have demonstrated a reduction of fronto-striatal connectivity to be associated with increased risk of impulsive-compulsive behaviour in Parkinson’s disease. Therefore, another aim of this study was to investigate the relationship between severity of impulsive-compulsive behaviour, dopamine synthesis capacity and fronto-striatal connectivity. Eighty participants underwent resting state functional MRI and anatomical T1-weighted images [mean age: 68 ± 9.9 years, 67% male (patients)]. In 59 participants, 18F-DOPA-PET was obtained and voxel-wise Patlak slopes indicating dopamine synthesis capacity were calculated. All participants completed the QUIP-RS questionnaire, a well validated test to quantify severity of impulsive-compulsive behaviour in Parkinson’s disease. A voxel-wise correlation analysis between dopamine synthesis capacity and QUIP-RS score was calculated for striatal regions. To investigate the relationship between symptom severity and functional connectivity, voxel-wise correlations were performed. A negative correlation was found between dopamine synthesis capacity and QUIP-RS score in the nucleus accumbens (r = −0.57, P = 0.001), a region functionally connected to the rostral anterior cingulate cortex. The connectivity strength was modulated by QUIP-RS, i.e. patients with more severe impulsive-compulsive behaviours had a weaker functional connectivity between rostral anterior cingulate cortex and the nucleus accumbens. In addition, cortical thickness and severity of impulsive-compulsive behaviour were positively correlated in the subgenual rostral anterior cingulate cortex. We found three factors to be associated with severity of impulsive-compulsive behaviour: (i) decreased dopamine synthesis capacity in the nucleus accumbens; (ii) decreased functional connectivity of the rostral anterior cingulate cortex with the nucleus accumbens; and (iii) increased cortical thickness of the subgenual rostral anterior cingulate cortex. Rather than a downregulation of dopamine transporters, a reduction of mesolimbic dopaminergic projections in conjunction with a dysfunctional rostral anterior cingulate cortex—a region known to play a key role in impulse control—could be the most crucial neurobiological risk factor for the development of impulsive-compulsive behaviours in patients with Parkinson’s disease under dopamine replacement therapy.
536 _ _ |0 G:(DE-HGF)POF3-572
|a 572 - (Dys-)function and Plasticity (POF3-572)
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Theis, Hendrik
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Giehl, Kathrin
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Hoenig, Merle C
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Greuel, Andrea
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Tittgemeyer, Marc
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Timmermann, Lars
|b 6
700 1 _ |0 P:(DE-Juel1)131720
|a Fink, Gereon Rudolf
|b 7
|u fzj
700 1 _ |0 P:(DE-Juel1)177611
|a Drzezga, Alexander
|b 8
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Eggers, Carsten
|b 9
700 1 _ |0 P:(DE-Juel1)169110
|a van Eimeren, Thilo
|b 10
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)1474117-9
|a 10.1093/brain/awz007
|n 3
|p 733-743
|t Brain
|v 142
|x 1460-2156
|y 2019
856 4 _ |u https://juser.fz-juelich.de/record/860706/files/awz007.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860706/files/awz007.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860706
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131720
|a Forschungszentrum Jülich
|b 7
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)177611
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)169110
|a Forschungszentrum Jülich
|b 10
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-572
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b BRAIN : 2017
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0320
|2 StatID
|a DBCoverage
|b PubMed Central
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9910
|2 StatID
|a IF >= 10
|b BRAIN : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21