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Preface

The goal of this thesis is to form a better understanding of the influence of
non-ideality parameters such as flexibility and polydispersity on the rheological
behavior of rodlike particle suspensions. Special focus is laid on the behavior of
rods under simple shear flow.
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Abstract

As the simplest form of polymeric materials, rodlike polymers provide a unique
opportunity to test and review the theory of polymer dynamics. Liquid
crystalline solutions of rodlike particles are of high industrial relevance and
their flow behavior during processing strongly influences the properties of the
final products.

While industrially used materials are mostly non-ideal in several aspects such as
flexibility and polydispersity of the particles, the theory of polymer dynamics is
best applicable only to ideal rods. The attempt of this thesis is to provide new
insights into the effect of such non-ideality parameters on the flow behavior of
rodlike suspensions.

Rodlike bacteriophages are used in this work in order to formulate materials
with well-defined system characteristics, which can be alternated in a controlled
way to understand non-ideal suspensions of rods. These rodlike viruses form
various liquid-crystalline phases in aqueous suspension. However, here we focus
on isotropic suspensions which have neither positional nor orientational order
in the equilibrium state.

The dynamics and phase behavior of suspensions in the isotropic state are
measured under flow by means of a combination of small angle neutron scattering
with rheology and heterodyne dynamic light scattering under flow. Based on
the experimental outcome, the theory of rodlike polymers is reviewed.

In chapter 2, a revised theory for ideal rodlike particles is derived and tested
in chapter 4. In chapter 5, we test the theory against the influence of non-
ideality parameters to gain a deeper understanding of the nature of these
influences. Particularly, new expressions for the rotational diffusion coefficient
under tube dilation and a non-equilibrium pair-correlation function are derived
to supplement the Fokker-Planck equation for rods.

In chapter 5, it is shown theoretically as well as experimentally that particle
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morphology is one of the key influences on the flow behavior of rods. In this
respect, length and flexibility are two counteracting parameters. With increasing
length, the dynamics of the rods slow down significantly leading to higher zero
shear viscosities, while an increase of particle flexibility has the opposite effect.
Furthermore, the onset of shear thinning depends crucially on the particle length.
An increase in length shifts the onset of shear thinning to smaller shear-rates. In
section 5.3.2, we use the understanding of this length dependence to make our
theoretical predictions quantitative by experimentally determining the prefactor
of the rotational diffusion coefficient in the tube model for the first time. This
is very useful, as it is the basis for the understanding of other phenomena
studied here and reported in literature. Due to a morphological transition to a
hairpin state, an increase in flexibility causes an increase of the viscosity in the
intermediate and high shear-rate regime, such that under strong flow, higher
length and higher bending rigidity are both promoting shear thinning.

In sections 4.3.1 and 5.2, small amplitude oscillatory shear is used to demonstrate
that the rotational diffusion and the particle flexibility crucially influences the
quasi-linear flow behavior of rods. It is found that, not unlike polymers, rods of
finite stiffness possess a relaxation time spectrum, see section 5.5.

Extensional flow measurements are conducted to demonstrate the effect of
flexibility in the highly non-linear flow regime, see section 5.4. It is found that
an increase in particle flexibility leads to a decrease in extensional viscosity. The
Trouton ratios of rodlike systems are shown to be comparatively large despite
of low normal stresses.

In section 5.6, it is demonstrated that the zero shear behavior of polydisperse
rodlike particle suspensions does not involve higher complexities, while the shear
thinning behavior becomes very complex and, therefore, cannot be understood by
employing linear mixing rules in the governing equations for particle dynamics.

Finally, it is shown in section 5.7 that a high enough length of rods is crucial
for a gradient shear banding transition to occur. Also, it is demonstrated that
none of the systems under investigation undergo stable gradient shear banding.



Beknopte samenvatting

Als de eenvoudigste vorm van polymere materialen bieden staafvormige
polymeren een unieke gelegenheid om de theorie van de polymeerdynamica te
testen en te beoordelen. Vloeibaar kristallijne oplossingen van staafvormige
deeltjes hebben een hoge industriële relevantie en hun stromingsgedrag heeft
daardoor een sterke invloed op de eigenschappen van de eindproducten.

Hoewel industriëel gebruikte materialen meestal niet-ideaal zijn in een of
meerdere aspecten, zoals flexibiliteit en polydispersiteit van de deeltjes, is
de theorie van de polymeerdynamica tot op de dag van vandaag alleen in staat
om ideale staven te beschrijven en zelfs deze theoriëen zijn niet goed getest
voor niet-linear stromingsgedrag. In dit profschrift wordt gepoogd om nieuwe
inzichten te verkrijgen in het effect van dergelijke niet-idealiteitsparameters op
het stromingsgedrag van staafachtige suspensies.

Om materialen te formuleren met duidelijk gedefiniëerde systeemkarakteristie-
ken, die op een gecontroleerde manier kunnen worden gevariëerd om niet-ideale
suspensies van staven te begrijpen, worden staafvormige bacteriofagen in dit
werk gebruikt. Deze staafvormige virussen vormen verschillende vloeibaar-
kristallijne fasen in waterige suspensie. In dit proefschrift richten we ons echter
op de isotrope fase waar staven geen positionele zowel als orientationele ordening
hebben.

Het dynamick- en fasegedrag van deze vloeibaar kristallijne oplossingen onder
stroming word gemeten door middel van een combinatie van kleine-hoek-
neutronenverstrooiïng met reologie en heterodyne dynamische lichtverstrooiïng
onder stroming. Gebaseerd op het experimentele resultaat, wordt de theorie
van staafvormige polymeren herzien.

Een herziene theorie voor staafvormige deeltjes is afgeleid en getest tegen de
invloed van niet-idealiteitsparameters om een dieper inzicht te krijgen in de
aard van deze invloeden. In het bijzonder worden nieuwe uitdrukkingen voor de
rotationele diffusiecoëfficiënt onder buisdilatatie en een niet-evengewichtspaar-
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correlatiefunctie afgeleid om den Fokker-Planck-vergelijking voor staven te
vervolledigen.

Er wordt zowel theoretisch als experimenteel aangetoond dat de deeltjes-
morfologie van zeer grote invloed is op het stromingsgedrag van staafjes.
Daarbij zijn lengte en flexibiliteit twee tegenwerkende parameters. Met
toenemende lengte vertraagt de dynamica van de staven aanzienlijk, leidend
tot hogere nulschuifviscositeiten, terwijl de toename van deeltjesflexibiliteit het
tegenovergestelde effect heeft. Verder hangt het begin van afschuifverdunning
in belangrijke mate af van de deeltjeslengte. Een toename in lengte verschuift
het begin van afschuifverdunning naar kleinere afschuifsnelheden. Door
gebruik te maken van de bibliotheek aan virus deeltjes konden we precies
de lengte afhankelijkheid, gegeven door een al eerder theoretisch ingevoerde
constante, bepalen, wat zeer nuttig is omdat dit al basis dient om alle andere
fenomenen te begrijpen. Vanwege het belang van uitgesloten volume-interacties,
verhoogt een toename in flexibiliteit de viscositeit in het tussenliggende en hoge
afschuifsnelheidregiem, zodanig dat onder sterke stroming, hogere lengte en
flexibiliteit beide afschuifverdunning bevorderen.

Oscillerende afschuifexperimenten met kleine amplitude worden gebruikt om
an te tonen dat de rotatiediffusie en de flexibiliteit van de deeltjes van cruciaal
belang zijn voor het quasi-lineaire stromingsgedrag van staven. Het is gebleken
dat staven, net als polymeren, een relaxatietijdspectrum hebben.

Rekmetingen worden uitgevoerd om het effect van flexibiliteit in het zeer
niet-lineaire stroomregime aan te tonen. Er is gevonden dat een toename in
deeltjesflexibiliteit leidt tot een afname van de extensionele viscositeit. De
Trouton-verhoudingen van staafvormige systemen zijn naar verhouding groot
ondanks lage normaal spanningen.

Er wordt aangetoond dat het nulafschuifgedrag van polydisperse staafvormige
deeltjessuspensies geen hogere complexiteiten met zich meebrengt, terwijl het
afschuifverdunningsgedrag zeer complex wordt en daarom niet kan worden
begrepen door lineaire mengregels te gebruiken in de van toepassing zijnde
vergelijkingen voor deeltjesdynamica.

Tenslotte wordt aangetoond dat een voldoende hoge lengte van staven
cruciaal is voor het optreden van een gradiënt-afschuifband-overgang. Het
is ook aangetoond dat ogenschijnlijke gradiënten van de ordeparameter
over de tussenruimte van een Couette-cel die wordt gedetecteerd door
neutronenverstrooiing bewijzen dat geen gradiënt-afschuifband-instabiliteit
optreedt.
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Chapter 1

Introduction

The widespread natural occurrence of rod-like particles is due to the large
versatility of material functionality which can be tuned for example by changing
their shape and size. Rods found in nature vary from inorganic nano-particles
[3, 4, 5] to biological filaments [6, 7, 8, 9, 10, 11], which can have various
chemical composition, causing their structure-property relations. Enhanced
mechanical, electrical, and optical macroscopic material properties of suspensions
[12, 13, 14, 15] are just some examples for these structural effects. This eminent
presence has both motivated and triggered the use of rod-like particles in a vast
diversity of engineering products such as biomedical applications [16], coatings
[17], composite materials [18, 19, 20], and structured consumer products [21].
A lowering of the percolation threshold with increasing aspect ratio, allowing
for network formation at relatively low particle volume fractions [22], and the
formation of ordered liquid-crystalline phases [23, 24] play the most important
role for these applications.

Neither of these transitions could occur in the absence of particle motility.
This circumstance makes nearly all questions about material performance and
structure a matter of particle dynamics. On the other hand, the effect of flow
on rod-like particles strongly depends on the phase of the dispersion, or in other
words, the positional and orientational ordering. The flow behavior can range
from simple shear thinning at low concentrations [25, 26, 27] to rich dynamic
behavior such as tumbling and kayaking in the nematic liquid-crystalline state
[28, 29]. Despite the influence of the applied flow field on the rheological response,
even shear flow as the simplest of all flow types can induce all aforementioned
rheological characteristics in colloidal suspensions. A thorough understanding
of the underlying physics governing the shear flow behavior of such systems can
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serve as a benchmark for tackling a large amount of even more complicated
rheological problems. Since the dynamics of rods in the nematic and smectic
phase have been extensively studied [30, 31, 32, 33, 34, 29, 1, 35, 24, 36, 37,
38, 39, 40], the topics of this thesis are the dynamics and phase-behavior of
semidilute rod-like colloidal suspensions under the influence of shear flow, since
the complexities of particle-interaction and caging in this regime are not fully
understood yet. Only a small part of this thesis is devoted to the comparison
of simple shear flow and uniaxial elongational flow.

We consider a system of rods as ideal, if the rods are monodisperse and if the
aspect ratio of the particles is larger than 100, with a persistence length much
larger than the contour length, which also implies a high bending rigidity, given
by the persistence length. Only such a system can be described by the theory
of Onsager [41], which predicts the phase behavior of ideal rods. Many studies
on the flow behavior of rod-like suspensions have been carried out for rather
small aspect-ratio constituents [42, 43, 44], although the particle anisotropy has
a strong influence on the rheological response. In addition, a majority of the
large aspect-ratio particles, such as carbon nanotubes [45, 46, 47], glass fibers
[48, 49] or actin [50, 51], that were studied, face the problems of polydispersity
and particle flexibility. Such non-ideal particle characteristics can play a very
important role and might hamper the identification of the origin of observable
phenomena. Due to this reason, the focus of this study lies on identification of
non-ideality influences on the shear flow behavior of rod-like colloids, starting
off with identifying the response of ideal rods.

In order to classify such non-ideality aspects, a suitable model system is necessary.
Ideally, such a system should suffice all criteria of ideal rods, such as large aspect
ratio, high stiffness and monodispersity, but allows for a controlled alternation
of these properties. Already in the 1930s, tobacco mosaic virus was found to
show birefringence under flow [52, 53] and form liquid-crystalline structures
[54]. Their stiffness and inherent monodispersity makes virus particles well-
suited for rheological studies and hence superior to other potential rod-like
model systems. Small drawbacks of tobacco mosaic virus , however, are its
comparatively small aspect-ratio and the low yield of the production, which
is an issue for macroscopic rheological experiments. This problem was solved
by employing rod-like bacteriophages such as the fd wild-type virus [55]. Fd
wild-type belongs to the lambda-class [56], which is a large class of rod-like
bacteriophages with similar thickness but differing length and flexibility. Thus,
the usage of this species allows for an alternation of particle characteristics. In
order to explore an even higher bandwidth of non-ideality, bio-engineering of
these phages can be employed, the first of which was reported by Overmann et
al. [57]. Induced mutations in the virus genome thereby lead to an alternation
of either length or stiffness of the wild-type virus or both. We exploit this to
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produce fd-Y21M, which we call the ideal rod here, since this system undergoes
an isotropic-nematic phase transition in perfect accordance with Onsager’s
theory.

A rheological investigation of structured fluids always needs to be accompanied
by an analysis of the structural changes under flow, as the mechanical response
underlies shear induced structural changes that need to be quantified. Optical
and electrical birefringence [52, 58], optical microscopy [29], light scattering
[59, 60], X-ray [61, 32], as well as neutron diffraction experiments [62, 63]
are suitable for this purpose. The most straightforward of these experiments
is small angle neutron scattering (SANS), since neither a signal loss at high
concentrations, which is an issue in birefringent experiments, nor a beam-
induced particle damage and sensitivity for back ground correction, which are
issues for SAXS, occurs. Thus, SANS provides the best available contrast of all
listed experiments. For this reason, rheology combined with SANS (rheo-SANS)
is employed in this thesis. Parts of the study are supported by heterodyne
dynamic light scattering under flow (flow-HDLS) which is employed to measure
velocity profiles.

A number of studies report on the aforementioned kind of experimental
investigations of fd wild-type virus and its mutants. Among the first were the
measurement of rotational diffusion of the fd wild-type at different concentrations
using electrical birefringence measurements [64] as well as the rheological
investigation of shear thinning as a function of ionic strength of the suspending
medium [55]. A characterization of the visco-elastic properties followed in 2000
[65] and not much later, the rheological properties of fd viruses in the nematic
phase [29] as well as in the isotropic-nematic phase transition regime [34] were
investigated. It was found that virus suspensions can undergo flow instabilities
[66] and further investigations on the effect of ionic strength [67], as well as
on the suspension to gel transition [68, 69] were conducted. For the mutant
virus fdY21M, the phase behavior was compared to that of the wild-type virus
[70], establishing the mutant as the ideal rod-like particle. Further studies
additionally showed that fd behaves as a quasi-ideal rod in equilibrium as well
as under flow [29].

Theoretical studies on the relations between structure and rheological properties
of rod-like colloidal suspensions were performed already in the early 1920s with
the prediction of an orbital motion of rods under shear flow in a dilute suspension
[71]. The first theoretical description of rheological properties for semidilute
rod-like suspensions under moderate shear flow followed later [72]. In the early
1960s, a first calculation of the rotational diffusion coefficient of rods in a dilute
suspension was given [73]. This motivated further theoretical investigations in
moderate [74] as well as strong [75] shear flow. With the advent of the tube
model [76], a deeper analysis of the particle behavior under shear flow was made
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feasible [77, 78, 79, 80], including a revision of the rotational diffusion coefficient
in semidilute suspensions which allowed for the first sophisticated estimate of
the zero shear viscosity [81]. Later, corrections for the zero shear viscosity were
introduced [82]. The rheology of rod-like suspensions in the vicinity of the
isotropic-nematic phase transition was reviewed by Olmsted in the late 1990s
[83, 84, 85] and an ab initio theory for the isotropic, nematic as well as phase
transition states by Dhont and Briels [86] followed.

In this thesis, we first investigate the shortcomings of Dhont-Briels theory [86]
for semidilute systems, resulting from neglecting the caging of particles, in the
first part of the thesis. We show that the tube model is essential to understand
the concentration dependence of the zero shear viscosity, η0 ∼ ϕ2, of our model
rod suspensions, leading to the observable strong shear thinning over several
orders of magnitude. A drawback of the tube model is that it cannot be used
for quantitative predictions due to an unknown prefactor in the equations. In
order to understand industrially relevant systems, such as those listed above,
this quantification is inevitable. Therefore, in the second part of the thesis, we
establish and use a library of wild-type and mutant rod-like bacteriophages,
spanning a range of different contour lengths. This allows us to identify the
prefactor in the tube model. Since, however, our rod-like particles vary in
contour length, L, while their persistence length, Lp, is constant, we cannot rule
out the possibility that the particles bend, strongly affecting the result of our
estimation. Therefore, we use two systems of similar length but very different
bending rigidity, LpkBT , in order to understand the effect of particle flexibility
on the flow behavior. Combining both, the knowledge of the length dependence,
and the knowledge of the flexibility dependence, completes the quantification
of the tube model. To our knowledge, an experimental investigation of the
prefactor of the tube model has not been accomplished before.

Due to the strong shear-thinning of our systems, which results in the extreme
case of dη/dγ̇ ∼ L−1 for very long particles, we cannot neglect the possibility of
shear banding. Therefore, we employ our library of rods to assess the possibility
of shear banding in semidilute rod-like systems and find that our systems do
not form stable shear bands. Finally, we investigate the behavior of rods in
elongational flow, which is found to be in marked contrast to the behavior in
shear flow, with regards to the effect of particle flexibility.



Chapter 2

Theory

2.1 Introduction

The alignment of dispersions of rods in shear flow is determined by a competition
between rotational diffusion of the rods, which tends to randomize the rod
orientation, and the shear rate, γ̇, which tends to orient rods in order to decrease
the macroscopic stress. The ratio of the two rates defines the Peclet number,
Pe = γ̇/Dr, where Dr is the rotational diffusion coefficient. In section 2.2,
first the simple case of non-interacting rods is considered, calculating the
diffusion rates due to hydrodynamic friction. When particles only interact
via hydrodynamics, the intrinsic viscosity at high shear rates can also be
calculated, if the concentrations are very low, and if all rods are disentangled,
following Hinch and Leal [75], see section 2.3. For completeness, also two similar
theoretical approaches for the intrinsic elongational viscosity are introduced,
both of which are based solely on hydrodynamic interactions.

For entangled rods the situation becomes much more complicated. With
increasing concentration, rods become entangled and cannot rotate freely due
to topological constraints. Clearly, the topological constraints are due to
simultaneous interactions between many rods. The increasing excluded volume
causes a phase transition from the orientationally disordered isotropic phase to
the orientationally ordered nematic phase. The thermodynamics of concentrated
dispersions of very long and thin rods, up to concentrations well within the
nematic phase, is accurately described within a second virial approach. Contrary
to the dynamics, for the thermodynamics it is sufficient to consider simultaneous
interactions between only two rods. It thus suffices to calculate the excluded

5



6 THEORY

volume for just two rods to achieve an accurate description of the isotropic-
to-nematic phase transition. Both dynamics and excluded volume effects play
an important role in the rheological behavior of rod-dispersions, both of which
should, therefore, be included in theoretical approaches addressing the flow
behavior of rod-dispersions.

The collective rotational diffusion coefficient becomes equal to zero at the upper
spinodal concentration related to the isotropic-to-nematic phase transition,
while the rotational self-diffusion coefficient remains finite. Figure 2.1 displays
simulations of the collective- and self-diffusion coefficients in dispersions of rods
as a function of their concentration. For long and thin rods with hard-core
interactions, the isotropic-to-nematic upper spinodal concentration is equal to
(L/d)ϕ = 4, with L the length and d the diameter of the core of the rods, and
ϕ the volume fraction.

Figure 2.1: Relative rotational diffusion coefficient as a function of relative
volume fraction for a single rod (black) and a collection of rods (red). Figure
taken from Tao et al. [1]. The results are plotted up tho the highest
concentration for which a simulation was feasible.

In section 2.4, we introduce the correct Fokker-Planck (FP) equation for
the description of N interacting rods under flow, neglecting hydrodynamic
interactions. In section 2.5, an approximate Fokker-Planck type of approach
for the probability density of finding a particle with a certain orientation is
introduced, following Doi, Edwards, and Kuzuu (DEK) [87]. This is used
to give an estimate for the zero shear viscosity under the assumption that
the dynamics is not affected by topological constraints involving multiple rod
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interactions, and with the neglect of hydrodynamic interactions between the
rods. The Fokker-Planck type of approach developed by Dhont and Briels [86]
constitutes a microscopic foundation of the DEK theory. In addition, the DEK
theory for the evaluation of visco-elastic response functions is based on free
energy considerations, while in the Dhont-Briels approach the starting point
is a microscopic expression for these response functions. Explicit expressions
for rheological response functions are found that differ from those found in the
semi-quantitative approach in the DEK theory, as shown in section 2.6. In
section 2.6.1, it is shown that the Dhont-Briels theory is capable of predicting the
critical slowing down of the collective rotational particle dynamics on approach
to the upper isotropic-to-nematic spinodal, and in fact reproduces the Onsager
theory for the isotropic-to-nematic transition. In this approach, the equilibrium
form for the pair-correlation function for very long and thin rods is used, which
neglects (i) the dynamics due to topological constraints involving multiple-rod
interactions, (ii) the effect of shear flow on the pair-correlation function, and
(iii) the effect of hydrodynamic interactions. Clearly, both the DEK approach
and the FP approach developed by Dhont and Briels are expected to achieve an
agreement with experiments on a qualitative and at most a semi-quantitative
level.

In section 2.7, topological constraints for the particle dynamics are introduced on
the basis of Doi’s theory [77, 81, 88], which can be used within the Dhont-Briels
framework to include topological constraints, as originally proposed within the
frame work of the DEK theory. Moreover, the Dhont-Briels theory assumes
that the pair-correlation function is not affected by shear flow, while in first
approximation, the topological tube is also assumed to be unaffected by shear
flow. The dilation of the tube due to shear is described at the end of section 2.7,
as has been reported earlier [87, 89], but here, full consistency with the Dhont-
Briels theory is achieved. The effect of shear flow on the pair correlation function,
however, has not been addressed so far. A simplified approach to solve this
problem is described in section 2.8 together with a possible but yet incomplete
solution.

In the following, vectors and tensors are denoted with bold script. The reader
is asked to infer either from the name of the object, or from context, whether
an object is a vector or a tensor.

2.2 Friction coefficients of a single rod

Regarding a cylinder with length L and thickness d, located at a position
r in space and pointing in the direction u, it is evident that four principal
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movements in space are possible. The rod can translate from r to r′ either along
or transverse to its long axis, or rotate either around its main axis, thereby
changing neither r nor u, or around its center point, from u to u′. All of these
motions can be induced by a Brownian force, but if the the rod is slender,
L/d ≫ 1, the rotation around the main axis can be neglected.

Suppose that a rod is situated in a fluid with a Newtonian solvent viscosity of
ηs under an external field which exerts a torque T on the rod. If the angular
velocity ω is small, the response will vary linearly with the signal, such that
(s.t.)

ω ∝ T . (2.1)

If the rod is thin enough, the motion around its associated vector u is negligible.
Therefore, the two aforementioned vectors are both perpendicular to u. A
friction constant ζr is introduced as a linear coefficient in the given relation
between torque and angular velocity:

ω =
1
ζr

T . (2.2)

Picture the rod as made up by N = L/d beads, numbered from −N/2 to N/2,
where we call the bead to bead distance d. If the rod rotates, the velocity at
the i-th bead will be

vi = ω × idu . (2.3)

We neglect the hydrodynamic interaction and set the frictional force acting
on segment N as −ζ0vN , where the translational friction constant for a bead,
ζ0 = 3πηsd, is used. One can now calculate the torque due to hydrodynamic
friction

T =
N/2
∑

i=−N/2

idu × ζ0vi = ηs
πL3

4
ω . (2.4)

This defines the rotational friction coefficient

ζr = ηs
πL3

4
. (2.5)

The definition for the rotational diffusion constant is Dr = kBTζ
−1
r , therefore,

one has

Dr =
4kBT

πηsL3
(2.6)

as a first estimate for the rotational diffusion coefficient [87]. To include
hydrodynamics, one can start with the linear constitutive equation for
momentum density by Newton, which is written in terms of the force acting on
a single bead fi in the picture we adopted before,

ηs∆v + ∇p = −
∑

i

fiδ(r − Ri) , (2.7)
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where p is the pressure and Ri the location of the i-th bead. Assuming that
the fluid is incompressible, s.t.

∇ × v = 0 , (2.8)

these two equations are solved by using the Fourier transform

v(r) =
∑

i

H(r − Ri) · fi , (2.9)

where
H =

1
8πηs|r| (I − rr) (2.10)

is called the Oseen tensor [90]. Since the beads of the rod move with the same
velocity as the surrounding fluid, one gets

vi =
∑

j

H(Ri − Rj)fi (2.11)

which has the nasty property of infinite trace. This problem is circumvented by
just defining the main diagonal elements as Hnn = δζ−1

r and resetting

H = H(Ri − Rj) ∀ i 6= j . (2.12)

One can rewrite the Oseen tensor as

H = (I + uu)hij , (2.13)

using the mobility matrix

hij =
1

8πηs|i− j|d . (2.14)

We neglect the term hnn for now. We can write the total force on the rod in
terms of the thermodynamic potential

∑

i

fi = −∇(kBT lnψ + U) , (2.15)

similarly, the torque on the rod is given by
∑

i

idu × fi = R(kBT lnψ + U) , (2.16)

where R = u × ∂/∂u, ψ is the probability density of rod distribution and U
is a yet unspecified potential. Substituting the result of the spatial as well as
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orientational Fourier transforms into these equations yields

∑

i,j

H−1
ij · [v + jdω × u − ∇v · (r + jdu)] = −∇(kBT lnψ + U) ,

∑

i,j

idu × H−1
ij · [v + jdω × u − ∇v · (r + jdu)] = −R(kBT lnψ + U) .(2.17)

Using the mobility matrix, this can be rewritten as

∑

i,j

h−1
ij

(

I − uu

2

)

· (v − ∇v · r) = −∇(kBT lnψ + U) ,

∑

i,j

h−1
ij ijd

2u ×
(

I − uu

2

)

· (ω × u − ∇v · u) = −R(kBT lnψ + U) .(2.18)

By definition, the inverse mobility matrix gives us the friction coefficients
ζt =

∑

i,j h
−1
ij ζr =

∑

i,j h
−1
i,j ij. Plugging these coefficients into the equations

above and solving for the velocity and angular velocity respectively gives

v = ∇v · r − 1
ζt

(I + uu) · ∇(kBT lnψ + U) ,

ω = u × ∇v · u − 1
ζr

R(kBT lnψ + U) . (2.19)

Comparing the velocity to the full form obtained from the solution of the
constitutive relation [87]

v = −
[

1
ζ‖

uu +
1
ζ⊥

(I − uu)
]

· ∇(kBT lnψ + U) + ∇v · r , (2.20)

gives ζ‖ = ζt/2 and ζ⊥ = ζt. It can be observed that hij decreases quickly with
|i− j|. Therefore, one can approximate the quantity as hnm ≈ hδnm, where

h = 2
∫ N/2

1

djh0j =
lnN/2
4πηsd

. (2.21)

From the definition of the friction coefficients, this gives:

ζt =
N

h
=

4πηsL

lnL/2d
,

ζr = 2d2

∫ N/2

1

dj
j2

h
=

πηsL
3

3 lnL/2d
. (2.22)
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Combined with the definition of the diffusion coefficient, this finally gives the
perpendicular and parallel diffusion coefficients

D⊥ =
kBT lnL/2d

4πηsL
, (2.23)

D‖ =
kBT lnL/2d

2πηsL
, (2.24)

and the rotational diffusion coefficient [73]:

D0
r =

3kBT lnL/2d
πηsL3

, (2.25)

where the superscript zero was introduced to clarify that this quantity is strictly
only valid in dilute suspensions.

2.3 Hydrodynamically interacting rods

While hydrodynamic interactions do not play an important role in shear flows
of Brownian rods, strong effects of hydrodynamic interactions were stated for
elongational flow [91, 82]. Although DEK theory can be used to calculate the
elongational viscosity of rod-like colloidal suspensions as well, the absence of
hydrodynamic interactions renders the approach questionable. The intrinsic
elongational viscosity, [ηe] = (ηe − 3ηs)/ηsϕ, instead, should be compared to
either the theory by Batchelor [91]

[ηe] =
4(L/d)2

9 ln π/ϕ
, (2.26)

or the theory by Shaqfeh and Fredrickson [82] which includes a more elaborate
view on mid-range hydrodynamic interactions

[ηe] =
4(L/d)2

9(ln 1/ϕ+ ln ln 1/ϕ) + 0.1518
. (2.27)

As described above, Brownian motion competes with shear flow in the sense
that shear flow tends to orient the main axis of the particles along the velocity
direction, while Brownian motion favors a random orientation of the rod. This
competition can be described by the Fokker-Planck (FP) equation. Although
different approaches of solving the FP equation can be found [78, 77, 86],
only the Doi-Edward-Kuzuu (DEK) theory [77, 92, 87] and the Dhont-Briels
theory [86] are discussed in detail here. For completeness, also a result of the
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interaction-less Fokker-Planck equation in the limit of high shear rates, applied
to dilute suspensions, is given [75]. Hinch and Leal solved the Fokker-Planck
equation for low concentrations, high shear rates, and slow diffusion. Therefore,
their equations apply to suspensions with high solvent viscosity such as the virus
suspensions in glycerol of this work. Defining the so-called intrinsic viscosity,
[η] = (η − ηs)/ηsϕ, as a concentration-independent relative viscosity, then in
the regime 1 ≪ Pe ≪ (L/d+ d/L)3, the intrinsic viscosity becomes [75]

[η] = Pe−1/3 0.5(L/d)2

lnL/d
. (2.28)

For even higher Peclet numbers, the viscosity becomes independent of Pe, such
that η → ηs.

2.4 N-particle Fokker-Planck equation

When interactions between particles are taken into account, the complexity of
theoretical approaches increases dramatically. The first attempt to develop such
a theory was by Hess [78], employing an irreversible-thermodynamics approach
and using the phenomenological deGennes potential [93]. Later, Doi-Edwards
[87] and Kuzuu [92] employed a Fokker-Planck type of approach. The governing
equation for the probability density function PN (r1, ..., rN ,u1, ...,uN ; t) of
finding N rods, located at the positions r1 to rN with orientations u1 to
uN , is the Fokker-Planck equation:

∂tPN (r1, ..., rN ,u1, ...,uN ; t) =
N

∑

i=1

{∇i · D̂(ui) · [∇iPN + βPN ∇iV ]

−∇i · [PN Γ · ri]

+DrRi · [RiPN + βPN RiV ]

−Ri · [PN ui × (Γ · ui)]} ,(2.29)

where the used symbols will be clarified in the following sections. In order
to make analytical progress, this equation has to be drastically reduced. An
important step is the integration of this equation with respect to all variables
except for u1. Since the integral theorems of Gauss and Stokes dictate
∫

dri∇i · (·) = 0 and
∮

duiR · (·) = 0, this integration leads to an extraordinary
simplification, resulting in the following Fokker-Planck equation for the one-
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particle probability density function ψ(u1; t) =
∫

dr1...
∫

drN

∮

du2...
∮

duNPN :

∂tψ(u1; t) = DrR1 ·
[

R1ψ +
∫

dr1...

∫

drN

∮

du2...

∮

duNβPN R1V

]

−R1 · [ψu1 × (Γ · u1)] .(2.30)

This equation can be treated further by reduction of the virials resulting from the
remaining integral. In the following, two approaches are given which accomplish
an analytical solution of equation 2.30.

2.5 DEK theory

The Fokker-Planck equation for the probability density function of a particle’s
orientation, ψ(u; t), on which the DEK theory is based reads

∂tψ = R ·Dr (Rψ − β ψ T ) − R · [ψu × (Γ · u)] , (2.31)

where Γ = ∇v is the velocity gradient tensor, and where

T = −RV , (2.32)

is the torque on the test rod through the interaction with a single neighboring rod,
and where Dr is an effective diffusion coefficient that accounts for topological
constraints (which will be discussed later), and V is the pair-interaction potential.
The last term describes the influence of shear flow. For the pair-interaction
potential, a Maier-Saupe type of potential is used (which will be discussed later)
with an unknown prefactor that characterizes the strength of the interactions.

For the derivation of the equation of motion of the orientational order parameter
tensor S =

∮

duψuu = 〈uu〉 from this equation of motion, a factorization closure
relation is used for averages of fourth order dyadic products of u. Such an
equation of motion is then used, within the DEK theory, to obtain expressions
for rheological response functions as follows. Since the elastic stress is related
to the change in free energy [87], we can write

δF = Σ(e) : δε , (2.33)

with a virtual deformation δε. The free energy of the fluid is given by

F = ν

∮

du(kBTψ lnψ + ψV) . (2.34)



14 THEORY

For an instantaneous deformation, the velocity gradient dominates equation 2.31,
which can thus be approximated as

δψ = −R · [ψu × (Γ · u)] δt , (2.35)

where Γδt = δε was used. We can insert this expression into the perturbation
of the free energy, giving

δF = ν

∮

duψ[−kBTR · (u × δε · u) + (u × δε · uψ) · RV] . (2.36)

Using the mathematical identity (where summation over repeated indices is
assumed)

R · (u × δε · u) = −3δεmn

(

umun − 1
3
δnm

)

,

leads to
δF = νδε : [3kBT (S − 1

3
I) − 〈(u × RV) u〉] . (2.37)

This gives the elastic stress tensor to a first approximation, where V = 0 [87],

Σ(e) = 3νkBT

(

S − 1
3

I

)

. (2.38)

The viscous part of the stress tensor can be estimated by regarding the viscous
dissipation:

W = Γ : Σ(v) . (2.39)

In the simplest case [87], one can write the velocity of the i-th bead of our rod
as

vi = −id(ω0 × u − Γ · u) = −idu (Γ : uu) , (2.40)

where ω0 = u × Γ · u. With the friction force fi = ζ0vi, one can denote the
work done by the fluid as [87]

W = ν
∑

i

〈fj · vj〉 = ν

N/2
∑

i=−N/2

ζ0i
2d2〈(Γ : uu)2〉 =

= νζr〈(Γ : uu)2〉 . (2.41)

by defining the fourth order alignment tensor, S(4) = 〈uuuu〉, this leads to

Σ(v) =
νkBT

2D0
r

S(4) : Γ . (2.42)
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Together with the pure solvent stress, one finds the full extra stress tensor for
the suspension

Σ = 2ηsE + Σ(e) + Σ(v) , (2.43)

where E = (Γ + ΓT )/2 is the rate of deformation tensor. The suspension
viscosity can be calculated from equations 2.43 and the equation of motion
resulting from equation 2.31 as η = Σ21/γ̇.

For weak velocity gradients, so in the zero-shear limit, the viscosity can be
given analytically. To see this, we multiply equation 2.31 by uu and integrate
over u, assuming for simplicity that V = 0, giving an equation of motion for
the orientational ordering tensor S:

dtS = −6D0
r

[

S − 1
3

I

]

+ Γ · S + S · ΓT − 2S(4) : E . (2.44)

For small velocity gradients, this is approximated as

dtS = −6D0
r

[

S − 1
3

I

]

+
1
5

E , (2.45)

where the following closure for the fourth order alignment tensor was used:

S(4) ≈ 1
15

(δijδkl + δikδjl + δilδjk) , (2.46)

leading to the solution of equation 2.45:

S(t) =
1
5

∫ 0

−∞

dt′ exp
[

−6D0
r(t− t′)

]

E(t′) . (2.47)

From equation 2.47, a simplified expression for the elastic stress tensor can be
derived:

Σ(e) =
3
5
νkBT

∫ 0

−∞

dt′ exp
[

−6D0
r(t− t′)

]

E(t′) , (2.48)

which gives the following elastic contribution to the shear stress:

Σ(e)
21 =

νkBT

10D0
r

γ̇ . (2.49)

From equation 2.42 and the closure, one finds for the viscous contribution to
the shear stress:

Σ(v)
21 =

νkBT

30D0
r

γ̇ . (2.50)

The zero shear viscosity, resulting from this stress tensor reads [87]

η0 = ηs

[

1 +
2π

45 ln(L/d)
νL3

]

. (2.51)
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2.6 Dhont-Briels theory

The DEK theory has been reconsidered by Dhont and Briels, departing from
an exact Fokker-Planck equation (but also with the neglect of hydrodynamic
interactions), equation 2.29 , and from a microscopic expression for visco-elastic
response functions. The analysis is based on the equation of motion

∂tψ = D0
rR ·

[

Rψ − βψT
]

− R · [ψu × (Γ · u)] , (2.52)

where D0
r is the rotational diffusion coefficient of a freely rotating rod (without

the influence of interactions with other rods) and T is the effective torque acting
on the test particle due to the presence of the other rods

T = −ν
∫

dR

∮

du′ψ(u′; t)g(R,u,u′; t)RV(R,u,u′) . (2.53)

Note that in the DEK-theory, the torque is given by equation 2.32, which is
simply the torque due to interaction of the test rod with a single neighboring
rod, in contrast to the torque in the above equation which is the torque acting
on the test rod by all other rods present in the system averaged with respect to
their positions and orientations. The latter torque is a function of concentration
and shear rate through the pair correlation function g(R,u,u′; t) . The above
equation of motion can be derived from the N -particle Fokker-Planck equation
by integration with respect to the orientations of all rods except for one rod,
and with respect to all position coordinates of the N rods. Here, ν is the
number density, R = r − r′ is the inter-particle distance, and, as before, V
is the bare pair-interaction potential. The first term on the right-hand side
of equation 2.52 describes the Brownian motion of the test particle and the
third term describes the torque on the particle which is induced by the flow
field. The above two equations represent the first equation of motion in a
hierarchy of equations of motion for reduced probability density functions: the
next equation of motion in this hierarchy is the equation of motion for the pair
correlation function, which depends on the three-particle correlation function.
If one would be able to find an exact (or at least an accurate approximate)
expression for the pair correlation function, including multiple rod interactions,
the two above equations would accurately describe the orientational probability
density function ψ, which can be used in expressions for rheological response
functions. The problem is that such an accurate approximate expression for
the pair correlation in concentrated suspensions under flow conditions does
not exist and its calculation is not feasible analytically. In the approach by
Dhont and Briels [86], the pair correlation function is simply approximated by
the equilibrium pair correlation function for very long and thin rods, which
is equal to exp{−β V}. As discussed in the beginning of this introduction,
this approach neglects the dynamics involving topological constraints where
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multiple-rod interactions are essential, as well as the shear-rate dependence of
the pair correlation function. Within this simple approximation, it is easily
shown that

T = −RV , (2.54)

where the effective pair-interaction potential is equal to

V = 2νdL2β−1

∮

du′ψ(u′; t)|u × u′| . (2.55)

Within a Ginzburg-Landau type of expansion with respect to the orientational
order parameter, we can approximate 1

|u × u′| ≈ 5π
16

[

1 − 3
5

uu : u′u′

]

, (2.56)

so that equation 2.55 simplifies to

V =
5π
8β
νdL2

(

1 − 3
5

S : uu

)

, (2.57)

yielding a closed expression for equation 2.52. Note that in the DEK theory, this
so-called Maier-Saupe potential is introduced by hand, leading to an unknown
prefactor that is stated to characterize the strength of the interactions.

Moreover, in the Dhont-Briels approach, the calculation of the stress tensor
is based on a microscopic expression for the stress tensor. This leads to the
following expression for the deviatoric part of the stress tensor in terms of the
orientational order parameter tensor

Σ(e) = 2ηsγ̇Ê + 3νkBT

[

S − 1
3

I +
L

d
ϕ

(

S(4) : S − S · S
)

)
]

+
1
6
Pe

[

S(4) : Ê − 1
3

I S : Ê

]

(2.58)

where Ê = Ê/γ̇, and, as before, the volume fraction of rods is equal to
ϕ = νLd2π/4, and S(4) = 〈uuuu〉.

Additionally, the equation of motion for the orientational ordering tensor,
including thermodynamic interactions, can be found from multiplication of

1A systematic expansion of |u × u
′| with respect to orthogonal polyadic products leads to

the more correct prefactor 3/4, which also gives the correct value for the concentration of the
upper isotropic-to-nematic spinodal of (L/d)ϕ = 4, instead of 5.
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equation 2.52 with uu and subsequent integration over u, using the potential
specified in equation 2.57:

dtS = −6D0
r

[

S − 1
3

I +
L

d
ϕ

(

S(4) : S − S · S
)

]

+Γ · S + S · ΓT − 2S(4) : E . (2.59)

For S(4), one can employ the closure relation [86]

S(4) : M =
1
5

(S · M + M · S − S · S · M

− M · S · S + 2S · M · S + 3SS : M) , (2.60)

with M an arbitrary but symmetric tensor, to obtain a closed equation of
motion for S. In the DEK theory, a simple factorization of S(4) is used, which
is not very accurate.

2.6.1 Isotropic-nematic phase transition

The equation of motion 2.59 can be used to calculate the location of the upper
spinodal for the isotropic-to-nematic transition. To this end, in the absence
of shear flow, the initially isotropic state is slightly aligned, after which the
decay or growth of the perturbation is analyzed. The concentration where the
(meta-)stable isotropic state becomes unstable on increasing the concentration
defines the spinodal. Hence, we substitute S(t) = I/3 + δS(t) into equation 2.59
and linearize with respect to the perturbation δS(t), which leads to

dS

dt
= −6Dcoll

r δS , (2.61)

where the collective rotational diffusion coefficient is given by

Dcoll
r = D0

r

(

1 − 1
5
L

d
ϕ

)

, (2.62)

The spinodal concentration is thus equal to ϕIN = 5 (d/L). The prediction by
Onsager is ϕIN = 4 (d/L) [41]. The difference between the two results is due
to the Ginzburg-Landau expansion 2.56 leading to the Maier-Saupe potential
in equation 2.57. In a more exact expansion in equation 2.56, with respect to
orthogonal polyadic products, the correct factor 4, instead of 5, would have been
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found, in agreement with Onsager’s prediction. The solution to equation 2.61
reads

δS(t) = δS(0) exp{−6Dcoll
r t} . (2.63)

Deep into the semidilute regime and thus sufficiently close to the isotropic-
nematic spinodal point, the shear dependence of the viscosity is dominated
by the critical slowing down of the collective rotational diffusion and does
not depend on just the rotational self-diffusion of a single rod, but rather on
the collective rotational diffusion coefficient, see figure 2.1. Therefore, the
competition between shear flow and Brownian motion needs to be described by
an effective Peclet number Peeff = γ̇/Dcoll

r .

2.7 Geometrical constraints for the rotational dif-

fusion coefficient

As mentioned before, when it would be possible to derive an accurate expression
for the pair correlation function in equation 2.53 for the torque, the equation
of motion 2.59 would include topological constraints as well as the shear-rate
dependence of the probability density function ψ for the orientation of a rod.
The derivation of an accurate expression for the pair correlation function is not
feasible analytically.

Multi-particle interactions become important in the semidilute concentration
regime ϕ∗ ≤ ϕ < ϕIN , where ϕ∗ ∼ 1/L3 is the overlap volume fraction of rods
and (L/d)ϕIN = 4 is the isotropic-nematic (I-N) spinodal point. While it can be
shown that interactions of more than two particles are not necessary to describe
the thermodynamics of rod-like colloidal suspensions [41], this does not hold for
the rotational diffusion of a test particle [94, 95, 96, 97, 98, 99, 89, 100, 101].
For purely geometrical reasons, the rotational motion of a test rod is severely
reduced compared to a free rod with a rotational diffusion coefficient of D0

r .
The FP equation for N rods, equation 2.29, is in principle capable to predict
all necessary particle interactions. Since we are unable to solve it, however, we
constrain the rotational diffusion. According to Doi [77, 81], the surrounding
particles in the semidilute concentration regime form a tube, constraining the
motion of a test rod to essentially one dimension. This is similar to the case of
flexible polymers. While the motion of the test rod perpendicular to the tube
is almost zero D⊥ ≈ 0, the motion along the tube with D‖ is unaffected. Since
a test particle can leave a tube after diffusion of roughly one half-length and
enter another tube, and the two tubes are very seldom parallel to each other,
rotational motion still takes place. This rotational motion is described by a
rotational diffusion coefficient Dr ≪ D0

r .
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Let us assume that the tube size is a, then the angle between two tubes can be
approximated as α = a/L. Since the rotational motion solely takes place in the
manner described above, one can denote the mean square displacement (MSD)
as

〈

(u(t) − u(0))2
〉

= α2 t

τr
, (2.64)

where τr is the rotational relaxation time. Since the Einstein expression [102]
for the MSD reads

〈

(u(t) − u(0))2
〉

= Drt , (2.65)

and the relaxation time of rods must be proportional to the parallel self diffusion
τr ∼ L2/D0

r , the combination of equations 2.64 and 2.65 gives a first expression
for the actual rotational diffusion in semidilute suspensions

Dr ∼ D0
r

( a

L

)2

. (2.66)

In order to approximate the tube size, one estimates the number of neighboring
particles N(Rt), penetrating the tube. By definition, at least one particle
penetrates the tube for full tube radius N(Rt) = 1 at Rt = a. Consider a
small region of the tube surface area δA with a surface normal vector s. If the
neighboring tube is oriented in direction u′ with a probability density ψ(u′),
it intersects δA, if the center of mass of both rods is located in the volume
LδA|u′ · s| and, thus, the number of penetrating rods can be given as

N(Rt) = νLδA

∮

du′ψ(u′)|u′ · s| . (2.67)

One can approximate |u′ · s| = |u × u′|| sin θ|, where θ is the angle between s

and u × u′. Upon integration, one arrives at a number

N(Rt) =
νAL

π

∮

du′ψ(u′)|u × u′| . (2.68)

Since A = 2πRtL, a comparison with the boundary value gives the tube radius

a ∼ 1
νL2

(∮

du′ψ(u′)|u × u′|
)−1

. (2.69)

By assuming a random positioning of neighboring rods, such as it should always
be the case below ϕIN , one arrives at the following description for this reduced
rotational diffusivity

Dr = cD0
r(νL3)−2 , (2.70)

where c is a coefficient on the order of 103 [87, 2]. This, however, is only valid
if the surrounding of our test rod is isotropic. In the anisotropic case, so under



SHEAR-RATE-DEPENDENT PAIR CORRELATION FUNCTION 21

an external field, the rotational diffusion depends on the average orientation of
the surrounding rods [98], such as in polymers [103], s.t.

Dr = cD0
r

[

νL3 4
π

∫

du′|u × u′|ψ(u′; t)
]−2

. (2.71)

Using the Ginzburg-Landau expansion from equation 2.56 and averaging
equation 2.71, the following mean rotational diffusion coefficient can be derived

〈Dr〉 = cD0
r

[

5
4
νL3

(

1 − 3
5

S : S

)]−2

. (2.72)

This allows for a revised Fokker-Planck equation, including caging and tube
dilation in the rod diffusivity

∂tψ = 〈Dr〉R ·
[

Rψ − βψT
]

− R · [ψu × (Γ · u)] . (2.73)

This change in the prefactor of equation 2.31 leads to another expression for
the elastic stress tensor,

Σ(e) =
νkBT

10〈Dr〉E , (2.74)

while the viscous part of the stress tensor is less affected by concentration, given
full hydrodynamic screening [87],

Σ(v) =
νkBT

60D0
r

E . (2.75)

Hence, the zero shear viscosity for interacting rods can be written as:

η0 = ηs

[

1 +
π

90 ln(L/d)
νL3 +

π

30c ln(L/d)

(

νL3
)3

]

. (2.76)

2.8 Shear-rate-dependent pair correlation function

Since the simple approximation g = exp{−β V} for the pair correlation function
completely neglects the topological constraints at high rod-concentration which
are now accounted for in the reduced rotational diffusion coefficient, one may
still use this approximation to evaluate the torque in equation 2.53. This
approximation accounts for interactions between rods in the dilute regime.
Since this approximation is valid for systems in equilibrium, there may be
contributions that depend on the shear-rate. Since in the integral for the
effective torque in equation 2.53 only distances which are within the range
of the pair-potential contribute, one needs the consider the distortion of the
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pair correlation function by shear only for such short distances. Since the bare
Peclet number is very much smaller than the reduced Peclet number (involving
the reduced rotational diffusion coefficient) in the semi-dilute regime, a linear
expansion with respect to the bare Peclet number is appropriate

g(R,u,u′; t) ≈ g(0)
[

1 + Pe g(1)(R,u,u′; t)
]

, (2.77)

where g(0) = exp{−β V}, and g(1) is an as yet to be determined correlation
function. The effective torque in equation 2.53 can be written as

T ≈ T
(0)

+ Pe T
(1)

, (2.78)

where the first contribution has been calculated above. For the additional
torque, we need to solve the following integral

T
(1)

(u; t) = −ν
∫

dR

∮

du′ψ(u′; t)g(0)g(1)
RV , (2.79)

which requires full knowledge of g(1). In the next subsection, we evaluate this
torque, where, however, quite strong approximations have to be made.

2.8.1 The road to a non-equilibrium pair correlation function

An equation of motion for the pair correlation function can be found by
integration of the N -particle Fokker-Planck equation, equation 2.29, with respect
to all positions and orientations except those for two rods. This equation is
amenable to analytical progress only with quite gross approximations.

The first approximation is to neglect contributions from the three-particle
probability density function, which contributes at higher concentrations. This
leads to

∂tP2(R,u,u′; t) =
2

∑

i=1

{∇i · D̂(ui) · [∇iP2 + βP2∇iV ]

−∇i · [P2Γ · ri]

+DrRi · [RiP2 + βP2RiV ]

−Ri · [P2ui × (Γ · ui)]} , (2.80)

where P2 is the two-particle probability density function. The pair correlation
function is defined as

P2 = P1(R,u; t)P1(R,u′; t)g(R,u,u′; t) , (2.81)
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where P1 is the single-particle probability density function, which was denoted
as ψ before. Furthermore, D̂(u) = D‖uu + D⊥ (I − uu) is the translational
diffusion tensor.

The second approximation is to neglect the dependence of the P1’s on the
orientations, that is, P1(R,u′; t) = P1(R,u; t) = ν/4πN , where, as before, ν is
the number density of rods. Hence,

P2 =
( ν

4πN

)2

g(0)
[

1 + Peg(1)(R,u,u′; t)
]

. (2.82)

This leads to the following equation of motion for the pair correlation function

∂tg(R,u,u′; t) =
2

∑

i=1

{∇i · D̂(ui) · [∇ig + βg∇iV ]

−∇i · [gΓ · ri]

+DrRi · [Rig + βgRiV ]

−Ri · [gui × (Γ · ui)]} . (2.83)

Thirdly, since the relaxation of the pair correlation function for the small inter-
particle separations of interest is fast, we neglect the time dependence of the
pair correlation function, that is, we assume the pair correlation function to
be enslaved by the externally imposed flow. Substitution of the expansion in
equation 2.82, keeping zeroth and first order terms in Pe, and subsequently
integrating of equation 2.83 with respect to the rod positions and one of the
orientations then gives

β
4π
ρ

R · T
(1)

=

R
2

∫

dR

∮

du′g(0)g(1) − PeR ·
[

u × Γ̂ · u

∫

dR

∮

du′g(0)

]

,(2.84)

where equation 2.79 has been used and where Γ̂ = Γ/γ̇.

Next, we assume that the non-equilibrium pair correlation function is only a
weak function of the inter-particle distance for the short distance of interest,
that is

g(1)(R,u,u′; t) ≈ g(1)(u,u′; t) , for R ≤ RV , (2.85)
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where RV is the range of the pair-interaction potential. This can be used in
equation 2.79, giving

T
(1)

(u; t) = −ν
∮

du′ψ(u′; t)g(1)

∫

dRg0
RV . (2.86)

We can expand the non-equilibrium pair correlation function in terms of dyadic
products of the orientation of the test rod, which can be regarded as a Ginzburg-
Landau expansion in the same spirit in which the Maier-Saupe potential is
derived

g(1) ≈ C0 + C1 : uu + C2 ⊙ uuuu + ... , (2.87)

where ⊙ is the contraction with respect to four indices. To obtain the torque
up to leading order in the orientational order parameter, it suffices to include
only the leading term in equation 2.87. This finally leads to

T
(1)

(u; t) = −νC0

∮

du′ψ(u′; t)
∫

dRg(0)
RV . (2.88)

The total torque is thus found, within these gross approximations, to be equal
to

T = −2β−1dL2ν(1 + PeC0)R
∮

du′ψ(u′; t)|u × u′| . (2.89)

Employing the same Ginzburg-Landau expansion as before, it is, thus, found
that

dtS = −6〈Dr〉
[

S − 1
3

I +
L

d
ϕ(1 + PeC0)

(

S(4) : S − S · S
)

]

+Γ · S + S · ΓT − 2S(4) : E , (2.90)

where the unknown constant, C0, serves as a free parameter in a comparison to
experiments, or could be determined by computer simulations.

2.9 Non-ideal rods: Effects of particle flexibility

One major assumption is used for the derivation of all equations above: infinite
bending rigidity, Lp/d → ∞. If this assumption is dropped, the rod-like
particles under inspection gain additional degrees of freedom [104, 87, 105].
This alternates first and foremost the diffusion coefficients, which play an
important role for the stress relaxation in the suspension, as indicated by
equation 2.49. If the bending rigidity of a semiflexible rod allows for one only
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one bending mode along the total contour length, L, the excluded volume
between particles is equivalent to that of stiff rods [106]. Here, only the effect
of bending rigidity on the rotational diffusion is discussed, but it is shown in
chapter 5 that this is insufficient to describe the non-equilibrium behavior of
flexible rods. Assuming that the particles have enough time to diffuse according
to the tube picture, the rotational diffusion coefficient, 〈Dr〉, changes [104, 107].
Given that the particle conformation is allowed to change slightly, one can
introduce a linear correction term for the particle thickness in equation 2.72. It
is obvious that the scaling argument is not changed for such a linear correction.
The only change one would expect from such a linear correction can be placed
into the prefactor c in the expression 〈Dr〉 = cD0

r (·)−2(for the content inside
the bracket, consult equation 2.72). The rotational relaxation time for rods,
therefore, becomes τend = 1/〈Dr〉.

On the other hand, the particles gain more degrees of freedom especially at
shorter timescales [108, 109, 110]. According to Morse theory [80, 111, 112],
which is based on the worm-like chain model, scaling rules for all important
diffusion coefficients can be given. At times τflex ≪ τr the particles can reduce
the overall suspension stress by undulation with a wavelength ∼ 2L. At even
smaller timescales, stresses can relax via a smaller wavelength undulation mode
with a relaxation time of τe. The inclusion of particle flexibility, therefore, leads
to a relaxation time spectrum (RTS) for rod-like particles,

gi(τi) = {gend(τend), gr(τr), gflex(τflex), ge(τe)} , (2.91)

where the essentially free rotational diffusion inside the tube, τr = 1/D0
r , was

included. In figure 2.2(b), the full relaxation time spectrum is sketched for
a semidilute rod-like particle suspension. Figure 2.2(a) displays the dilute
suspension case.

While the only timescale playing a role in steady state shear flow is τend, the
linear viscoelasticity as well as the time resolved rotational diffusion strongly
depend on the RTS. The given modification of Dhont-Briels theory, including
the rotational diffusion coefficient 〈Dr〉, corrected for particle flexibility, as well
as the non-equilibrium pair correlation function, can be used to describe the
orientational ordering and suspension viscosity of semiflexible rods under steady
shear flow.

2.10 Non-ideal rods: Effects of polydispersity

In a polydisperse environment, both the diffusion coefficients of rods as well as
the particle-particle interactions change [113, 114, 105]. This complicates the
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Figure 2.2: Dynamic moduli vs. frequency predicted by Morse theory in (a)
the dilute and (b) the semidilute concentration regime.

solution of Dhont-Briels theory. However, one can assume for simplicity that
the single particle behavior remains unchanged and still obeys Dhont-Briels
theory in the given form and that the tube constructed by two different species
is the roughly the same as that of two identical species. This assumption
does not agree with the scaling of the tube size, Dtube ∼ L2, which shows a
strong length dependence. If we consider that the motion of all rods is confined
according to the tube picture, however, we can assume that the mean particle
length in the mixture is the deciding quantity affecting the particle motility,
as Dr ∼ L−9. We regard bidisperse species with a small length bidispersity,
L(1) 6= L(2), described by the following linear mixing rule:

ϕ(m) = ϕ(1)(1 − ρ) + ϕ(2)ρ , (2.92)

where the relative volume fraction is called ρ. Using the definition of the volume
fraction, ϕ = (π/4)d2Lν, we can easily prove that the same mixing rule holds
for the lengths,

L(m) = L(1)(1 − ρ) + L(2)ρ, (2.93)

given that the number density, ν = N/V , is independent of polydispersity.
Combining these mixing rules with equation 2.90, leads to a first simple
description of the rheology and orientational ordering of a bidisperse, semidilute
rod suspension. As an example, one can write down the zero shear viscosity,

η0 = ηs

[

1 +
π

90 ln(L(m)/d)
ν(L(m))3 +

π

30c ln(L(m)/d)

(

ν(L(m))3
)3

]

, (2.94)

where the viscous stress tensor, with V = 0, was taken into account. No simple
expression for the the nonlinear viscosity can be obtained, but a solution of
equation 2.90 with an incorporated linear mixing rule is unproblematic.
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A mixing rule for a completely polydisperse sample can be structured in the
same fashion, but it remains questionable if the given approach is sensible if
very small and very long rods are present in the mixture, since for example, very
small rods could act as a complex solvent for very long rods or phase separation
between rods of different lengths could occur. In such cases, a full theoretical
description like that of Marrucci and Grizzuti [113] needs to be considered.





Chapter 3

Experimental

3.1 Materials

In this thesis, rod-like bacteriophages of the lambda-class are used as a model
system. In particular, these are fd wild-type, fdY21M, M13k07, M13-mini,
and Pf1 wild-type virus. Since all phages of this class have the same thickness
of 6.6 nm, a polyethylene glycol coating is applied to vary this geometrical
parameter. The species themselves span a range of 0.33-1.96 µm in contour
length with M13-mini the shortest and Pf1 the longest rod, and a range of
0.88-9.9 µm in persistence length, see table 3.1. To test for the effect of particle
stiffness, we consider fd wild type and fdY21M, as the bending rigidity [115],
LpkBT , of those systems is different, while their contour length is almost
identical. For the other species, we need to keep in mind that L/Lp increases
linearly with the contour length, which causes a decrease of the correlations
between the rod ends and possibly allows the particles to bend considerably if
L ≥ LP .

All viruses were grown inside their host-bacteria in Luria-Bertani broth [116, 117],
following standard biological protocols [118]. The surface of all viruses consists of
helically ordered proteins covering the core DNA. FdY21M virus is a stiff mutant
of wild-type fd virus, where the 21st amino group of the capsid protein (g8p) was
changed from tyrosine (Y) to methionine (M) [57]. M13k07 as well as M13-mini
are derivatives of the M13 wild-type bacteriophage. In the case of M13k07,
the genus of reproduction in the DNA was alternated using the reproductive
genome section of another helper page (P15A) as well as a kanamycin resistance
[119]. The genome change results in a higher effective particle length compared

29
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to fd wild-type virus. M13-mini is produced by replacing the respective region
of the genome with another helper-phage plasmid (pSB4434) and additional
kanamycin and chloramphenicol resistance [120]. Despite the longer genome,
the change in DNA causes the phage to encode for a virus roughly a third the
size of fd wild-type. All of these phages grow in the XL-1 blue strain of E.-coli,
except for Pf1 virus, which is a Pseudomonas Aeruginosa phage.

Roughly 90 mg of virus can be harvested from 6 l infected Luria-Bertani broth.
After growth to saturation, the virus particles were cleaned from the remainders
of their host bacteria by multiple centrifugation steps at 3x104 g for 2 h and
subsequent ultra-centrifugation at 1x105 g for 12 h. In the case of M13-mini, the
resulting virus pellet held a significant amount of spherically collapsed particles,
see figure 3.1. The spherical content can be compared to the collapsed coat
proteins reported by Griffith et al. [121]. Most certainly, the collapsed virus
coat protein emerges after expelling of the core DNA, see figure 3.2, where
an assembly of core DNA together with the collapsed coat protein could be
detected by AFM. In order to purify the rod-like species alone, suspensions
in pure deionized water were prepared at a concentration deep in the nematic
state. The phase separation of spheres and rods took on average 36 h, after
which the pure rod-like phase could be separated.

After the final purification step, all species were suspended in water with
20 mM/l Trizma base to create a colloidal suspension with high stability over
long timescales. The viruses have negative surface net-charge in a pH neutral
environment which leads to this colloidal stability. To achieve pH neutrality,
the necessary amount of concentrated HCl was added to the suspension. Since
the Trizma base ions are weakly bound to the virus surface at an ionic strength
of 10 mM resulting from the use of Trizma base alone, their interaction can be
lowered, thus assuring a hard-core interaction potential. This is achieved by
adding 90 mM/l sodium chloride, giving an ionic strength of 100 mM at pH 8.3.

After purification by ultra-centrifugation, a fraction of fdY21M was suspended
in phosphate buffer and coated with end functionalized monodisperse 8 kDA
Polyethylen Glycol (PEG) in a grafting-to procedure based on click chemistry
[122]. The functionalized material was carefully cleansed from buffer and PEG
residuals by repeated centrifugation and re-dispersion. Additionally, a fraction
of fdY21M was suspended in 20 mM/l Trizma buffer with only 10 mM/l of salt.
Both, the PEG coated virus in 100 mM buffer, as well as the bare fdY21M
suspended in 20 mM buffer should possess the same effective particle thickness
[70] of roughly 17 nm, see table 3.1.

To allow for an investigation of the systems using SANS, the water of all
suspensions was fully replaced by Deuterium Dioxide. Additionally, fd wild-type
virus as well as fdY21M were suspended in a mixture of glycerol and 100 mM
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Figure 3.1: AFM image of M13-mini (L = 0.33 µm, Lp = 2.8 µm) on
polyallylamine. The scale bar on the right shows the detected object thickness.

Figure 3.2: AFM image of expelled core DNA of M13-mini plus collapsed coat
protein on polyallylamine, the scale bar on the right shows the detected object
thickness.

Trizma buffer (Merck KGaA, Darmstadt, Germany). This was achieved by
dispersing the pelleted viruses after ultra-centrifugation in a small amount of
Trizma buffer resulting in a highly viscous slurry. Under continuous shaking,
pure glycerol (Merck KGaA, Darmstadt, Germany) was added to this slurry
until a concentration of 86.03 m% for the fd wild-type medium and 86.01 m%
for the fdY21M medium was reached. The glycerol to Trizma buffer ratio was
chosen to minimize the uptake of air humidity.

For the measurement of suspension concentration, a UV-Vis spectrophotometer,
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Table 3.1: Materials
material length Lp [70] ionic strength deff [24]

µm µm mM nm
fd 0.88 2.8±0.7 100 10.5

fdY21M 0.91 9.9±1.6 100 10.5
10 17

fdY21M peg 100 17
M13k07 1.2 2.8±0.7 100 10.5

M13-mini 0.33 2.8±0.7 100 10.5
Pf1 2.1 2.8±0.7 100 10.5

Varian Cary 50 (Agilent, California, USA), was used. After subtraction of
the sample background induced by the Trizma buffer, absorption spectra were
measured between wavelengths of 240-300 nm where the virus coat protein
characteristic is located. The absorption spectrum has a local minimum at
244 nm and a local maximum at 269 nm. In the case of a pure sample, the
ratio between peak value and minimum value should be 1.04. For calculation
of the suspension concentration, only the peak value is of interest. Using the
absorption coefficients, listed in table 3.2, the concentrations can be calculated.

All colloidal suspensions were prepared at the isotropic binodal point, ϕI , and
subsequently diluted to concentrations of roughly 75, 50, 25 and 10% of ϕI .

Isotropic binodal points, ϕI , are estimated for all systems by birefringence
studies. The virus systems in 100 mM ionic strength buffers are concentrated
such that the suspensions are nematic. Then, the suspensions are carefully
diluted into the biphasic gap. We wait until phase separation is complete, using
glass capillaries of 20 mm diameter, placed between crossed polarizers. Phase
separation results in a liquid with a certain nematic and a certain isotropic
fraction. We subsequently collect the isotropic fraction and determine its
concentration. In table 3.2, the resulting scaled isotropic binodal points are
listed.

Atomic force microscopy (AFM) was performed using an Agilent 5500 system
(Keysight Technologies, Santa Rosa, USA) equipped with MSNL-F cantilevers
(f=125-160 kHz, k=0.6-1.4 N/m; Bruker, Camarillo, USA) with an average
tip radius of 2-12 nm. Samples were prepared by applying 400 µl of 1000-fold
diluted virus suspensions to 1x1 cm SiO2 plates, coated with polyallylamin,
comparable with the stamp preparation procedure reported by van Grinsven et
al. [124]. After a 10 min settling time, the excess fluid is largely removed by
the dry room air. The surface coating, thereby, provides a small contact angle
between liquid and probe surface, such that no flow gradient is induced by the
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Table 3.2: Virus coat protein absorption coefficients and estimated scaled
isotropic binodal points.

virus absorption coefficient LϕI/deff

ml/mg cm
fd 3.84 [70] 4.61

fdY21M 3.63 [70] 3.4
fdY21M peg 3.63 4.63

M13k07 3.84 5.62
M13-mini 3.84 3.7

Pf1 2.25 [123] 8.37

drying procedure. This is different from the drying procedure on aminosilane
coatings, showing a slightly higher hydrophobicity compared to polyallylamine.
Samples can be subsequently scanned for a few times, before the virus coating
protein is falling apart.

3.2 Measurements and Methods

3.2.1 Rheology

Rheological measurements of steady and start-up shear flow were carried out in
a strain controlled ARES-LS rheometer (TA Instruments, New Castle, USA)
equipped with a Couette cell of 1 mm gap size and 34 mm outer diameter. All
measurements were carried out at 22oC. The measurement range was chosen
from 0.0001-1000 s−1 for all samples. Depending on the sample, the lowest
measurable shear-rate was adjusted according to the lower torque limit of the
device. In case of steady shear measurements, also transient shear stress curves
were measured, see figure 3.3. The steady state stress was evaluated from the
final plateau values of the stress, Σsteady, which was typically reached after 2-4
strain units, depending on the sample.

Small amplitude oscillatory shear (SAOS) measurements are difficult to perform
for water based virus suspensions due to the low torque these systems induce in
the quasi-linear response regime. Therefore, all reported data were obtained for
glycerol/Trizma buffer mixtures. The enhanced torque due to this suspending
medium allows for the use of a different sample environment. All SAOS
measurements were carried out in the strain controlled ARES LS rheometer
equipped with a 25 mm diameter cone-plate geometry with 1o cone angle. The
cone-plate geometry was equipped with a solvent trap to prevent evaporation.
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Figure 3.3: Stress at a shear-rate of 10 s−1 as a function of time for fdY21M
virus (L = 0.92 µm, Lp = 9.9 µm) in a glycerol based buffer at different
concentrations. The two horizontal lines mark the overshoot and steady stress
values.

The measurement temperature was 22oC. Pre-shear at a shear-rate of 100 s−1

was applied for 5 min to erase any possible effects from sample loading. The
sample rested for 100 min after this procedure to assure equilibration. Strain
amplitude sweeps were carried out at 1 rad/s ranging from 0.05-200% strain.
From this window, it was always possible to deduce the linear response regime
as well as the lower torque limit at the given frequency. The usual strain
amplitude chosen for frequency sweeps was 10% and the frequency range was
0.0001-100 rad/s. Usually, the torque limit of frequency sweeps was reached at
around 0.01 rad/s, depending on the sample concentration.

Uniaxial extensional rheometry was performed in a HAAKE CaBER-1
extensional rheometer (Thermo Haake GmbH, Karlsruhe, Germany). The
drive unit of the device was used to control the position and separation velocity.
Two circular plates with a diameter of 4 mm were used. For the diameter
evolution under extensional flow, a high speed camera was used (Photron
Fastcam SA-2, Photron, San Diego USA). The measurement temperature was
set to 22oC via the room temperature control circuit. The fluid drop was
extended rapidly by applying a sudden change in plate separation from initially
2 mm to a value of 6 mm. The minimum filament radius Rmin initially evolves
over time according to:

Rmin(t) = R1 − σ(2X − 1)
6ηe

t , (3.1)
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Figure 3.4: Filament diameter versus time before the time of filament rupture,
tb = 0, for different concentrations of fdY21M (L = 0.92 µm, Lp = 9.9 µm) in
glycerol/Trizma buffer. Dotted lines are scaled with X = 0.7127 (V-scaling),
dash-dotted lines with X = 0.5912 (IV-scaling). The inset shows the end of
filament lifetime.

where σ = 63 mN/m was the surface tension of all suspensions independent
of the virus content, measured by the pendant drop method, X = 0.7127 is
a correction factor due to slight derivations of the filament geometry from
ideal cylindrical shape [125, 126], and R1 is the initial radius. At the end of
the filament lifetime, the correction factor changes to a value of X = 0.5912
[127, 128]. Only in the case of the lowest measured concentration, the second
scaling factor had to be used, see figure 3.4.

In figure 3.4, the filament diameter is plotted against the relative measurement
time, before the time of filament breakup, tb. The extension rate is

ǫ̇ =
2
D

dDmin

dt
, (3.2)

with the current filament diameter D.

3.2.2 Rheo-SANS

Rheo-SANS measurements were performed at the SINQ spallation source at the
Paul Scherrer Institute in Villigen, Switzerland, the Institute Laue-Langevin
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in Grenoble, France, as well as the Heinz-Maier Leibnitz Zentrum in Garching,
Germany. An Anton Paar MCR 501 rheometer (Anton Paar, Graz, Austra) was
mounted in the beam-lines SANS-1 in Villigen and KWS-2 in Garching. Both
measurement geometries were composed of a quartz glass Couette cell with the
same geometry as the Couette cell used in the ARES-LS as well as an inner
quartz glass cylinder. Since the MCR 501 is a stress controlled rheometer, all
measurements were repeated for control purposes using the ARES-LS rheometer.
The incident beam probes the sample geometry in the flow-vorticity plane during
simultaneous recording of the stress signal. In Grenoble, the flow-gradient plane
could be probed by placing a shear cell 1 into the D22 large dynamic range small
angle diffractometer. As the shear cell was equipped with a state-of-the-art
gearbox transducer and a brush-less ec-motor for continuous movement, it was
feasible to measure at extremely low shear-rates in this geometry, γ̇ = 10−5 s.

All rheo-SANS measurements were performed at 22oC with a detector distance
of 6 m and a thermal wavelength of the neutrons of 1.3±0.1 nm, except for
gap scans, where the neutron wavelength was adjusted to 0.6±0.08 nm. A
detector distance of 3 m was also used in order to measure the thickness of the
rods. The aperture size in Garching and Villigen was 2.5x2.5 cm. In Grenoble,
an aperture size of 1.5x0.9 cm was used and switched to a size of 1.5x0.3 cm
in the case of gap scans in the vorticity direction. A scattering vector range
from 3.2x10−2-4.6x10−2 Å−1 was used for the intensity calculations along the
azimuthal angle. In figure 3.5, the evaluation of azimuthal intensity profiles,
used for further analysis, is plotted for two chosen q-ranges. Since no difference
between the two q-ranges (I) and (II) could be found for any measurement, we
chose to evaluate the indicated range (II) since it was less prone to intensity
fluctuations very close to the edges of the beam-stop than the lower q-range (I).

The inset of figure 3.5 displays two exemplary intensity profiles I(θ) as a function
of the azimuthal angle θ which describes the flow-vorticity plane of orientational
ordering of rods in a Couette cell geometry. Similar to this, intensity profiles
I(φ) can be plotted as a function of the planar angle φ describing the flow-
gradient plane. Assuming that the two intensity distributions are equivalent
to the orientational distribution functions ψ(α), where α stands for either the
azimuthal or the planar angle, one can deduce the full orientational ordering
tensor S during flow by combination of the two measurements with incident
beams in either the gradient or the vorticity direction of the cell.

Under the assumption of a Maier-Saupe [129] orientational distribution, one
can describe these intensity profiles using second order Legendre polynomials
P2(α− αmax) = (3 cos(α− αmax)2 − 1)/2:

ψ(α) = I0 exp[KP2(α− αmax) − 1] , (3.3)

1doi: 10.5291/ILL-DATA.9-10-1475
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Figure 3.5: Intensity versus scattering angle for fd wild-type virus (L = 0.88 µm,
Lp = 2.8 µm) at a concentration of 15 mg/ml in Deuterium Dioxide with an
ionic strength of 100 mM. The full line indicates q−1 dependence and the
dashed line q−2. The inset shows the azimuthal intensity profiles evaluated in
the two indicated zones (I) and (II) of the scattering vector.

where αmax is the angle between the director and the direction of fluid flow, I0 is
the intensity amplitude and K describes the width of the intensity profile [130].
Earlier studies employing these assumptions have proven that the orientational
distribution is well described by this function [131, 32]. The average order
parameter, 〈P2(α)〉, can be calculated by fitting the measured intensity profiles
with the given functions, and taking the average of P2(α) over the thus obtained
distribution function:

〈P2(α)〉 =

∫ 1

0
d cos(α)ψ(α)P2(α− αmax)

∫ 1

0
d cos(α)ψ(α)

. (3.4)

The order parameters in the flow-gradient and flow-vorticity plane are directly
proportional to the largest eigenvalue of S, λ1, projected into the respective
planes 〈P2(α)〉 = (3λ1(α) − 1)/2. The traceless orientational ordering tensor,
Q = (3S − I), needs to be defined in order to perform a transition from the
reference frame of the measurement to the frame of flow. By using a rotation
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matrix:

R(0,θ) =





cos θ sin θ 0
− sin θ cos θ 0

0 0 1



 , (3.5)

the relation between the two tensors can be rewritten as

S =
(

R(0,θ)
)T

Q̃R(0,θ) , (3.6)

where the orientational ordering tensor in the laboratory reference frame is
Q̃ = (2Q + I)/3. From the measurements, we can deduce that φmax = 0 at all
times, giving us the opportunity to define the tensor Q:

Q33 = λ1(θ) ,

Q22 = T − 1
2
λ1(θ) ,

Q11 = −T − 1
2
λ1(θ) . (3.7)

Here, T quantifies the biaxiality of the distribution, defined as

T =
1

2(2 − λ1(θ) − λ1(φ))

[

λ1(θ)λ1(φ) − λ2
1(θ)

]

. (3.8)

Throughout the thesis, the order parameter in flow-vorticity direction,〈P2〉(θ),
is shown, if not indicated otherwise.

3.2.3 Flow profiling

Flow-heterodyne dynamic light scattering (flow-HDLS) was performed using
the setup available at the Institute of Complex Systems-3 in Forschungszentrum
Jülich, Jülich, Germany [132]. A quartz Couette-flow cell similar to the two cells
described above, but with a 1.5 mm gap width and an outer cylinder diameter of
47 mm, was mounted into the split light beam of a Kr-laser (wavelength=647 nm,
I=100 mW; Spectra Physics, Santa Clara, USA). A frontal lens is located on a
movable platform controlled by a linear EC motor, allowing for a gap scan of
the cell in gradient direction.

Flow-HDLS is characterized by two incident laser beams with scattering vectors:

q1 = k1 − kf ,

q2 = k2 − kf ,
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where k1 and k2 are the wave vectors of the incident beam and kf is the wave
vector of scattered light at the detector, see, e.g., the books by Durst [133] or
Drain [134]. The Doppler shifts of these two scattering vectors are:

ω1 = q1 · v ,

ω2 = q2 · v ,

where v is the fluid velocity. The measured frequency, ω = ω1 − ω2, is
independent of the wave vector at the detector. This frequency is directly
proportional to the Doppler frequency, tosc, and thus directly proportional to
the velocity:

tosc = ω/2π =
2n sin(θn/2)

λ
|v| cosβ , (3.9)

where θ is the angle between the wave vectors of the incident beams inside the
sample volume, β the angle between k1 −k2 and v, and n is the refractive index
of the medium. In our case, we will assume cosβ = 1.

Within the crossover region of the two incident laser beams, the experimental
intensity correlation function, g2(τ), can be measured as a function of the lag
time, τ , given exemplary by the red symbols in figure 3.6.

Over the scattering volume, the correlation function generally decreases in
amplitude. The decrease is caused by the relative motion of particles in the
measurement volume which can have several reasons, e.g., diffusion of particles
and the velocity gradient. This decrease is not captured in equation 3.9. For
the velocity measurement itself, only the oscillating component of the intensity
function is of interest here since this is the only component depending on the
velocity, see equation 3.9. In order to obtain a better fit to the measured
correlation function, however, a more complex form can be derived [135],
capturing among other things also the loss of intensity along the scattering
volume:

g2(τ) = A+

B exp

[

− τ

tlin
−

(

τ

tsqr

)2
] {

C + exp
[

− τ

tfluct

]2

cos
(

2πτ
tosc

)

}

, (3.10)

where tlin, tsqr, and tfluct mark the physically motivated fitting parameters for
the case of a flow situation of higher complexity (fluctuations with a lifetime
of tfluct, for example, arise only in turbulent flow fields), A is the baseline, B
the amplitude and C the modulation. From the cosine term, the velocity of the
fluid can be calculated using equation 3.9.
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Figure 3.6 shows the fitted function from equation 3.10 (blue curve). The
fitting function is in good agreement with the measured function in figure 3.6(a),
except for higher lag times. Since the important aspect of the fitting function
is the correct capturing of the wavelength, the velocity calculation from this
exemplary curve can be regarded as correct. Since the outer cylinder of the
shear cell stands still while the inner cylinder rotates, the intensity correlation
function shows less oscillations at the outer wall, as shown in figure 3.6(b), thus,
slightly higher errors in the velocity calculation occur. Nonetheless, except for
locations very close to either wall, enough oscillations for a thorough calculation
of the velocity were measured.





Chapter 4

Ideal rods

4.1 Introduction

The understanding of dilute suspensions of rods is profound, due to a long
history of theoretical work [71, 75, 136, 82] accompanied by experimental
investigations [137, 138] which are in good agreement. It is understood that
in dilute suspensions, the rods tumble in shear flow. The observed rheological
behavior of nematic liquid-crystalline suspensions [139, 140, 141, 142, 34, 143,
144, 38] is more complex, as kayaking, wagging, tumbling, and flow-alignment
can occur, depending on the circumstances. Understanding this plethora of
effects on a theoretical basis, however, has been accomplished in large parts
[129, 87, 145, 86]. Between dilute and nematic suspensions, lies a range of
concentrations we like to call semi-dilute, in the sense that the particles overlap
considerably, ϕ ≫ ϕ∗. This region is governed by comparatively simple shear
thinning [146] and the theoretical understanding should be straight forward,
given that both dilute and nematic suspensions are described well by the existing
theory. The interaction of particles in this regime, however, is quite complex
due to the caging of particles [147, 148, 114, 149] and an analytical solution of
the governing Fokker-Planck equation is only feasible using strongly restricting
assumptions, see chapter 2. This leads to the inevitable use of the tube model
in order to make quantitative predictions of rheological constants and functions
for industrially relevant systems, which are highly desirable. In this part of the
thesis, we assess the need for the tube model to describe semi-dilute suspensions
of ideal rods. It is shown that the tube model is needed to understand the
measured zero shear viscosity, but at higher shear-rates, dilation of the tube and
a shear-mediated inter-particle potential are needed to describe the behavior.

43
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The newly developed non-equilibrium pair correlation function is tested and we
find a good agreement with the measured viscosity curves but underestimate
the orientational ordering.

The SAOS response of the ideal rod, reported in section 4.3.1, reveals signatures
of the rotational diffusion coefficient as well as the characteristic time of particle
undulation. The relatively short time of undulation, however, seems to play a
negligible role for the steady state shear flow behavior, reported in section 4.3.2,
which is dominated by shear thinning and concomitant orientational ordering
of rods in the direction of flow. This concentration dependent behavior is
sufficiently described by the critical slowing down of the collective particle
dynamics towards the IN transition. In section 4.3.3, the elongational viscosity
is measured. A strong increase of the Trouton ratio with increasing particle
concentration is reported. Due to the strong shear thinning behavior, we finally
test for shear banding in the ideal rod-like system, see section 4.4, but no shear
banding transition is found.

4.2 Material

The ideal rod-like colloidal suspension is composed of fdY21M in a 100 mM
Trizma base buffer solution. Due to the relatively small Debye double layer
around the rods in this buffer, see for example [122], the effective thickness of the
virus in suspension is ∼ 10.5 nm [70]. This gives an effective aspect ratio of ∼ 87.
Together with its persistence length of roughly 10 times the contour length, it
meets all theoretical requirements on ideality regarding morphological aspects.
According to Onsager theory [41], the isotropic binodal point of the ideal rod is
located at ϕI = 3.29deff/L. FdY21M undergoes this phase transition exactly at
this scaled concentration, as was shown by Barry et al. [70] and in this thesis,
see table 3.2. This makes fdY21M ideally suited for rheological investigations
on ideal rods and allows for a comparison to theoretical descriptions of the ideal
rod behavior under flow. All investigated suspensions are as concentrated as
ϕ = 280ϕ∗ and higher.
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4.3 Linear and nonlinear rheology

4.3.1 SAOS

The concentration dependent shear flow behavior of the ideal rod, fdY21M,
in the linear viscoelastic (LVE) response regime is studied using SAOS. As
described in chapter 3, such a measurement is not feasible in water. Therefore,
all measurements comprise fdY21M in glycerol/Trizma buffer mixtures. In such
a buffer, the ionic strength is ∼ 10 mM, resulting in an effective thickness of
17 nm [24]. This shifts the experimentally estimated isotropic binodal from
ϕI ≃ 0.045 to ∼0.026 and the corresponding concentrations from ∼16.3 mg/ml
to ∼9.3 mg/ml. In order to stay in the dilute to semidilute concentration regime,
therefore, the highest measured concentration was chosen at 9.1 mg/ml, rather
close to the isotropic binodal point.

Figure 4.1 shows the storage modulus, G′(ω), and loss modulus, G′′(ω), as
a function of frequency for all measured concentrations inside the semidilute
concentration regime. It is obvious that the viscous part of the LVE response,
G′′(ω), is higher than the elastic part ,G′(ω), for all accessible frequencies at
lower concentrations, see figures 4.1(a), (b), and (c). At higher concentrations,
shown in figures 4.1(d) and (e), the elastic contribution becomes more important,
resulting in a crossing over of the two corresponding curves. Two crossover
points emerge: one around a relaxation time τ−1

low ≃0.1 s−1 and the other at
τ−1

high ≃1 s−1. At the highest concentration, figure 4.1(e), the lower crossover
point is shifted to lower values, while the higher crossover point is shifted
to higher values compared to the lower concentration, shown in figure 4.1(d).
Despite these characteristics, all curves for corresponding moduli at different
concentrations seem to be of similar shape, gaining in magnitude with increasing
concentration.

The overall LVE response of ideal rods can be divided into three regions: a
low frequency (long time) region, which is barely covered by the measurements,
since the torque limit is reached already around ω ≈ 0.01 s−1, a mid-frequency
region, and a high frequency (short time) region. In the high frequency region,
the loss moduli seem to have a constant slope of 1, independent of concentration.
In the mid frequency range, the curve flattens. In the low frequency domain, the
curve seems to become steeper again. The slope of G′′(ω) in the low frequency
regime equals the zero shear viscosity of rods η0 = limγ̇→0 G

′′(ω)/ω. Since the
regime cannot be identified clearly, the zero shear viscosity is not measurable
for the system comprised of the glycerol/Trizma buffer.

These curve characteristics can be interpreted, in the framework of the theory
of Morse [80, 111, 112]. The thin lines in figure 4.1 show results for the complex
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Figure 4.1: Dynamic moduli vs. frequency of fdY21M (L=0.91 µm, Lp = 9.9 µm)
for several concentrations in the semidilute concentration regime. The lines are
theoretical predictions by Morse for the storage (full lines) and loss modulus
(dashed lines) in the dilute (thin) and semidilute (thick) concentration regime.

moduli of a dilute rod-like particle suspension calculated from Morse theory.
The theory has both the stiffness of the particles as well as the particle aspect
ratio as input parameters. At the lowest measured concentration, figure 4.1(a),
the theoretical prediction of the loss modulus agrees only quantitatively with the
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experiments, while the prediction of the storage modulus is in good agreement
to the measurement only in the low and mid frequency regime. At higher
frequencies, the measured curve diverges from the prediction.

At higher concentrations, figures 4.1(b) and (c), an even larger deviation of the
measurement from the theoretical prediction can be identified, as the curves
of G′(ω) begin to touch those of G′′(ω) in a certain point. Here, we call two
curves touching, if the values for G′ and G′′ at the same frequency are located
within the error bars of each other. This feature is not covered by Morse theory,
since the curve characteristics of the theory change strongly from low to high
concentrations inside the semidilute concentration regime.

At even higher concentrations, figures 4.1(d) and (e), both moduli curves move
towards the Morse prediction for the concentrated regime, represented by the
thick lines, and start to cross. The measured curve for G′′ does not display
a non-monotonic functionality as predicted by the theory. Nonetheless, the
theory allows for an interpretation of the two crossover points. Comparing
with figure 2.2(b), we can interpret the two crossover points as the important
relaxation times of the rod-like particle. The lower frequency crossover point
can be interpreted as τ−1

low = τ−1
r and the higher one as τ−1

high = τ−1
flex. The

theory further predicts the existence of a relaxation time of particle undulations
at a length scale much smaller than the particle contour length,τe, located
at the onset of equal slopes of the two moduli curves at high frequencies.
From figures 4.1(b), (c), and (d), also this relaxation time can be estimated as
τ−1

e ≃100 s−1, seemingly independent of the sample concentration. From this
value, one can calculate the undulation length, Le ∼ Lp(ρ̃L2)−2/5 ≃ 0.9 µm,
where ρ̃ is the contour length per unit volume, since the fast undulation time is
given as τe ∼ L4

e/DrLp.

It is surprising that the relaxation time for particle undulation, τflex, is clearly
visible, see figures 4.1(d) and (e), given the immense persistence length of
fdY21M, Lp ≈ 10L. Despite the fact that the theoretically predicted elastic
plateau region of G′(ω) does not occur, this speaks for a non-negligible particle
bending during flow. Hence, the ideal virus is not fully stiff, if probed at the
relevant timescales.

The finite flexibility of fdY21M is also apparent from AFM pictures, see figure 4.2.
The ideal virus can obviously bend, maybe due to capillary forces and the
proximity to the substrate, being even able to form hair-pins [150] in the dried
state close to the polyallylamine surface used for the AFM probes. Despite
this obvious flexibility of the phage in the apparent equilibrium state, AFM
probes taken with the slightly more hydrophobic substrate coating material
aminosilane, inducing a coffee-ring effect [151] and thus a biaxial elongational
flow, see figure 4.3, display large fractions of perfectly straight rods. The flow
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4.3.2 Steady state shear flow

The nonlinear steady state shear flow behavior of fdY21M is studied by means of
step rate tests, where the material is subjected to a constant shear-rate and the
shear stress is measured over time. Figure 3.3 shows step rate tests for different
concentrations of fdY21M dispersed in glycerol/Trizma buffer at a shear-rate of
10 s−1. The outcome of step rate tests performed in a water based buffer are
similar. The curves show an overshoot stress at short times of ∼ 0.04 s which
relaxes completely after approximately 1 s, followed by a stress plateau. For
the calculation of steady state viscosities, the constant long-time shear stress
values are averaged and divided by the shear-rate.

Figure 4.4: Shear viscosity as a function of shear-rate fro different concentrations
of fdY21M (L=0.91 µm, Lp = 9.9 µm) virus in aqueous (a) and glycerol-based
(b) buffers. The lines mark the torque limit of the rheometer. Error bars for
higher concentrations in (a) and all concentrations in (b) are vanishingly small.

The nonlinear steady shear viscosity curves for different concentrations of
fdY21M dispersed in the watery buffer (a) as well as in the glycerol based
buffer (b) are shown in figure 4.4. Obviously, the steady state shear flow of
fdY21M in the dilute to semidilute concentration regime is governed by shear
thinning. While the onset of a Newtonian plateau, supposedly located at very
low shear-rates, is adumbrated for the higher concentration samples in the
water-based buffer, see figure 4.4(a), the viscosity curves in glycerol display
shear thinning at every measurable shear-rate, compare to figure 4.4(b). Due
to the nature of the suspension, one could expect a terminal plateau region
limγ̇→∞ η(γ̇) → ηs of the viscosity curves, comparable to the low shear-rate
Newtonian plateau. For the measurable shear-rate range, however, neither are
detectable, since the inertial limit of the device is reached at 1000 s−1. Despite
this fact, the viscosity curves in glycerol, see figure 4.4(b), seem to be closer
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to the terminal region then those in water. The reason for this is the slowing
down of rotational diffusion caused by the high viscosity of the suspending
medium. Together, the two buffers reveal the whole measurable rheological
behavior of rod-like colloids under steady shear flow in the dilute to semi-dilute
concentration regime.

Figure 4.5: Order parameter and shear viscosity as a function of the shear-rate
for different concentrations of fdY21M (L=0.91 µm, Lp = 9.9 µm) in an aqueous
buffer. For the error bars of the viscosity, see figure 4.4.

An interesting aspect is the change of shape of viscosity curves, comparing
higher and lower concentrations in the water based buffer, see figure 4.4(a).
Although nearly the same concentration of fdY21M was measured in the glycerol-
based buffer, the curves in figure 4.4(b) are of similar shape. In general, a
similarity in curve-shape assures that the microscopic phenomenon underlying
shear thinning is unique. A loss of this aspect on the other hand suggest a more
complicated microscopic reason for this macroscopically observable phenomenon.
To understand the rheological results, therefore, the structure must be probed.

The nonlinear shear flow behavior of rods is governed by flow-alignment of the
molecules and concomitant shear thinning. Figure 4.5 shows the order parameter
〈P2〉 as well as the viscosity as a function of the applied shear-rate. We observe
that the orientational ordering of rods increases significantly with increasing
shear-rate, leading to strong shear thinning of the sample. The highest order
parameter reached under the maximum shear-rate not only differs significantly
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from unity, but seems to be concentration dependent. The highest observed
orientational ordering thereby decreases with decreasing particle content.

Figure 4.6: Viscosity as a function of shear-rate for different concentrations
of fdY21M (L=0.91 µm, Lp = 9.9 µm) in an aqueous buffer, compared to
a fit of equation 4.1 using different shear thinning parameters, n, and curve
widths, a = {10, 1.3, 2.9, 1.3, 27.6, 10} ordered from the highest to the lowest
concentration. Inset: Shear thinning parameters as a function of concentration.

Interestingly, the order parameter curve for the lowest concentration does not
show a different shape than the other two curves measured for the higher
concentrations. Similarity of curve shape of the orientational ordering curves is
therefore given for all concentrations, see also figure 4.7. This fact, together with
the similarity of shape of shear viscosity curves in worm-like micellar systems
was exploited to deduce a scaling procedure for the flow/orientation diagrams
of rod-like objects [63]. In the worm-like micellar system, the similarity of curve
shape pointed in the direction of a unique underlying phenomenon behind shear
thinning being fully governed by the orientational ordering. As a result, a
master curve could be drawn by scaling the viscosity with the apparent zero
shear viscosity and plotting it as a function of the order parameter [63]. In this
way, the zero-shear viscosity, despite not being a measurable quantity, emerged
from this scaling procedure. Although worm-like micelles are different from
the ideal rod-like system in several ways, we follow this procedure. In the
case of the ideal rod, which should be even better suited for such an approach
than the worm-like micelles, we learn, however, that the scaling does not lead
to a perfect master curve, see figure 4.7. For the scaling of the viscosity in
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figure 4.7(b), the highest measured viscosities were taken as an estimate for η0

for each concentration.

Figure 4.7: (a) Viscosity and (b) relative viscosity as a function of the order
parameter for different concentrations of fdY21M (L=0.91 µm, Lp = 9.9 µm)
in an aqueous solvent. Error bars of the viscosity are negligibly small.

Since the similarity of curve shape of the viscosity curves is lost at low
concentrations, no master curve including dilute and semidilute rod-like
suspensions can be drawn. Nonetheless, the approach seems to work for the
highly concentrated regime, where the zero shear viscosity can be deduced from
this scaling procedure under the assumption that the single particle contribution
to this quantity is negligible and only the collective behavior is of importance.
The reason for the deviation of curve shape for lower concentrations, however,
remains unclear. To deduce the zero shear viscosity for the low concentrations,
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the Carreau [152] constitutive equation,

η − ηs = (η0 − ηs)/(1 + aγ̇)n , (4.1)

with one parameter determined by a = Pe/γ̇ and a free exponent, n, is used to
fit the measured flow curves, see the inset in figure 4.6. The high concentration
zero shear viscosities from this fitting procedure match with those obtained by
scaling.

Since the collective response of orientational ordering causes shear thinning,
the full measurement results from figure 4.5 can be plotted as a function of the
effective Peclet number, Peeff = γ̇/Dcoll

r , instead of the shear-rate. Figure 4.8
shows the master curve of orientational ordering and concomitant shear thinning
for all concentrations of fdY21M. The Peclet number is scaled with the collective
rotational diffusion coefficient, Dcoll

r = Dr(1 − ϕ/ϕIN ). This is similar to
equation 2.62, except that we allow Dr to be concentration dependent.

Figure 4.8: Order parameter (open symbols) and scaled shear viscosity (full
symbols) as a function of effective Peclet number for different concentrations of
fdY21M (L=0.91 µm, Lp = 9.9 µm) in an aqueous buffer.

We find that ϕIN = 4.3, somewhat higher than the theoretically predicted
equilibrium transition. Dr is plotted in figure 4.9, together with the
corresponding values for η0. The line in figure 4.9 is a prediction of the
zero shear viscosity using the revised Dhont-Briels theory, equation 2.76. In
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principle, both quantities should be related via equation 2.74. In the following
chapter, we will confirm this relation using rods of different contour length.

While the theoretical prediction is in very good agreement with the apparent zero
shear viscosities at higher volume fractions, it underestimates the values found
for lower concentrations. This points in the direction of a reduced rotational
diffusivity of particles even at rather low concentrations, where the predicted
values for Dr approach D0

r . In other words, the rotational diffusivity is not free
for all measured concentrations, but constrained according to the tube model.

Figure 4.9: Scaled zero shear viscosity and fitted rotational diffusion as a
function of scaled volume fraction for fdY21M (L=0.91 µm, Lp = 9.9 µm) in an
aqueous buffer. The line is a prediction from the revised Dhont-Briels theory,
using the tube model, equation 2.76.

So far, we highlighted the orientational ordering of rods in the flow-vorticity
plane, figures 4.8 and 4.9. In general, we cannot assume that the orientational
ordering of rods in gradient and vorticity direction is identical. On the contrary,
the flow in a Couette geometry should hardly permit transmission of momentum
in the vorticity direction, but most momentum transfer of the fluid should
take place in gradient direction. This is a theoretical result, following from the
identical symmetry of the elastic part of the stress tensor and the orientational
ordering tensor, equation 2.58. This would cause the orientational ordering
tensor to be biaxial with a higher ordering in the gradient direction as compared
to the vorticity direction, thus a negative biaxiality according to our definition,
see equation 3.8. In figure 4.10(b), the order parameters in the flow-gradient
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plane, 〈P2〉(φ), and in the flow-vorticity plane, 〈P2〉(θ), are shown as a function
of the effective Peclet number. We cannot identify large differences between
the two order parameters. This is reflected in the small amplitude of the
biaxiality, shown in figure 4.10(a). The close similarity of both orientational
ordering curves points in the direction that the momentum transfer in the
rod suspension is evenly distributed between gradient and vorticity direction.
The reason for this could be the quasi-uniaxial nature of the stiff constituent
particles. If this was the reason for the observed flat biaxiality, the theoretical
prediction by Dhont and Briels should predict no biaxiality, since it assumes
perfectly thin, uniaxial rods. This is not the case, as indicated by the lines
in figure 4.10. It is, thus, surprising that the ordering of fdY21M in gradient
and vorticity direction is almost identical. Nonetheless, two important details
should be discussed. First, we observe a sign change of the biaxiality, T , around
Peeff ≈ 5, indicating a higher momentum transfer in vorticity direction as
compared to the momentum direction in this regime. Second, at high Peclet
numbers, the biaxiality seems to increase strongly, reaching values almost as
high as the theoretically predicted final value. Neither of these characteristics
is theoretically predicted. We conclude from this observation, that it is not
generally true that the symmetry of the elastic part of the stress tensor is equal
to that of the orientational ordering tensor. This is, if ever, only correct for
high applied shear-rates. In the low and intermediate shear-rate regime, the
collective dynamics of rods do not follow the symmetry conditions of the applied
field.

Theoretical predictions of the shear dependent viscosity and the order parameter
can also be compared directly to the measured data. Figure 4.11 shows the
relative viscosity and orientational ordering for fdY21M at 10.6 mg/ml, compared
to Dhont-Briels theory using different rotational diffusion coefficients. The dash-
dotted line is the original Dhont-Briels theory, combined with the rotational
diffusion coefficient of a free rod, D0

r [87, 86], see equation 2.25. Although
the original theory does predict an increase in order parameter connected to
shear-thinning behavior, it is not in good agreement with the measured data
since the onset shear-rate for shear thinning is too high and the zero shear
viscosity is too low.

When the tube model is taken into account, assuming an isotropic rod
distribution, the rotational diffusion is severely decreased as compared to the
free particle motility, see equation 2.70. This leads to a correct prediction of the
onset shear-rate for shear thinning as well as the correct zero shear viscosity,
compare also to figure 4.9. Nonetheless, larger deviations from the measurement
at low as well as high shear-rates can be found. If the assumption of isotropic
surrounding is dropped, the rotational diffusivity is allowed to depend on the
orientational ordering: 〈Dr〉 = 〈Dr〉(S), see equation 2.72. This leads to a
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Figure 4.10: (a) Biaxiality and (b) order parameter in gradient and vorticity
direction as a function of the effective Peclet number for fdY21M (L=0.91 µm,
Lp = 9.9 µm) at a concentration of 10.6 mg/ml in an aqueous buffer. The curve
in (a) shows a prediction from Dhont-Briels theory, equation 2.59. The curves
in (b) show the theoretical order parameters in gradient (full line) and vorticity
(dotted line) direction. Error bars in (b) are omitted for reasons of readability.

slightly better agreement between the theoretical prediction and the measured
data, see the full lines in figure 4.11. However, discrepancies between theory and
measurement remain. If the pair correlation function, used in equations 2.31
and 2.53, is changed from the Onsager [41] equilibrium pair correlation function,
g0 = exp[−βV ], to a first order shear-rate dependent approximation of the non-
equilibrium pair correlation function, g ≈ g0(1+Peg1), the resulting theoretical
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Figure 4.11: Reduced viscosity (full symbols) and order parameter (open
symbols) as a function of shear-rate for fdY21M (L=0.91 µm, Lp = 9.9 µm) at
10.6 mg/ml in an aqueous buffer. The lines are predictions from Dhont-Briels
theory using different rotational diffusion coefficients: equation 2.25 (dash-
dotted), equation 2.70 (full), and equation 2.72 (dashed). For the error bars,
see figures 4.4, and 4.5.

prediction is in much better agreement with the measurement results of the
viscosity, see figure 4.12. As described in section 2.8, this change in the pair
correlation function requires an estimate of C0. Here, C0 = −0.2 was used,
indicating that the impact of shear flow on the pair correlation function is
relatively small with a deviation of 20% from the equilibrium pcf at a Peclet
number of Pe = 1. However, at the same time, the estimated order parameter
at high shear-rates drops significantly. While Dhont-Briels theory together with
shear induced tube dilation overestimates this value, the improvement on the
theory underestimates it. It is, therefore, possible to make a different choice of
C0, trying to fit both the viscosity and the order parameter at high shear-rates
with the smallest possible error. This procedure, however, will not contribute
to the understanding of the non-equilibrium thermodynamics of rods and, thus,
will not be shown in this work.

Comparison to Dhont-Briels theory shows that the particle dynamics play a
key role in understanding the non-equilibrium behavior of rod-like particle
suspensions. The measurement even suggests that the effect of tube dilation
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Figure 4.12: Reduced viscosity (full symbols) and order parameter (open
symbols) as a function of shear-rate for fdY21M (L=0.91 µm, Lp = 9.9 µm)
at 10.6 mg/ml in an aqueous buffer. The lines are predictions from Dhont-
Briels theory using different pair correlation functions: equation 2.59 (full), and
equation 2.90 with C0 = −0.2 (dashed).

could be stronger than predicted. This means that the mean value of the
rotational diffusion coefficient used in the calculation might not be an ideal
measure for relaxation of molecules at high shear-rates. Instead, rotational
relaxation should probably become almost free at high shear-rates. This,
however, seems to be compensated in large part by the use of a shear-rate
dependent pair correlation function. This result can be understood in terms of
the excluded volume of rods. The excluded volume between particles decreases
with increasing shear-rate. This effect should be accounted for by using higher
virials in the Fokker-Planck equation 2.80, but can also be partly accounted
for by using the non-equilibrium pair correlation function, see equation 2.90.
However, certain discrepancies between experiment and theory remain due to
the assumptions taken. The road to a non-equilibrium pair correlation function
with less assumptions is given in section 2.8, but the resulting equations were
not solved analytically at the given time.



LINEAR AND NONLINEAR RHEOLOGY 59

4.3.3 Uniaxial elongational flow

The behavior of rod-like particle suspensions under uniaxial elongational flow is
probed by capillary breakup extensional rheometry. Since this measurement
technique requires filament stability, resulting from a relatively high viscosity of
the sample, glycerol/Trizma buffers are used.

While orientational ordering in shear flow approaches steady state values for
sufficiently long times, this is not the case for high-extension-rate extensional
viscosities as found in many industrial applications, where the time-scale of the
processing step during which extension occurs is shorter than the time needed for
equilibration [153, 154]. This leads not only to a significant difference between
achievable orientational ordering in shear and elongational flows [155], but also to
a change in the Trouton ratio, which is defined by the ratio of the elongational
viscosity and the shear viscosity, ηe/η. Figure 4.13 shows the elongational
viscosity in comparison the shear viscosity as a function of the square root of
the second invariant of the rate of deformation tensor, Π2 =

√

|II2D| = γ̇ =
√

3ǫ̇,
for different concentrations. From one single measurement, two points can be
deduced, since the extension rate is a function of the capillary diameter, see
equation 3.2. The first points are calculated at the onset of the final filament
thinning regime, see figure 3.4, where a cylindrical filament is formed. The
second point is taken just before filament rupture. Since the elongational
viscosity is calculated from the surface tension, which is assumed to be shear-
rate independent, the value for this quantity is independent of the filament
thickness and, therefore, constant over the measured rates, as indicated by the
lines connecting the hollow markers.

In comparison to the measurement under steady shear, it is obvious that the
values of the extensional viscosity are located in a rate region shortly before a
terminal plateau for the shear viscosity is reached. Therefore, a concentration
and rate dependent Trouton ratio can be calculated. For Newtonian liquids,
the Trouton ratio is 3. For the case of rods, Trouton ratios between 3 and 12
can be found, depending on the concentration of the sample.

Similar to the zero shear viscosity, the elongational viscosity increases strongly
with increasing concentration. Figure 4.14 shows the elongational viscosity as a
function of the relative volume fraction. Both, the theory by Batchelor [91], and
by Shaqfeh and Fredrickson [82], agree well with the measurement results. This
agreement, however, is only reached by using the hydrodynamic particle aspect
ratio L/dHD as a fitting parameter. The effective hydrodynamic thickness, dHD,
of rods in the glycerol/Trizma buffer is estimated as L/dHD = 42, as indicated
in the legend of figure 4.14. The estimated hydrodynamic thickness found by
curve fitting agrees with measured values from the literature [156].
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Figure 4.13: Shear (full symbols) and elongational (hollow symbols) viscosity as a
function of Π2 for different concentrations of fdY21M (L=0.91 µm, Lp = 9.9 µm)
in a glycerol-based buffer. The thin inclined line indicates the torque limit of
the rheometer. The error bars are vanishingly small.

The large concentration dependence of the elongational viscosity is interesting,
given the fact that at these high rates, the differences between shear viscosities
are almost vanishingly small. A full explanation cannot be given without the
measurement of orientation under elongational flow. However, it should be
remarked that the excluded volume could play a very important role in this
high extension rate regime, if this quantity plays a similarly important role as
in the simpler steady shear case.

4.4 Rheology near the IN transition

Sufficiently close to the upper isotropic-to-nematic spinodal point, the collective
rotational diffusion of rods, Dcoll

r = D0
r(1 −ϕL/4d), goes to zero, as established

in chapter 2 and experimentally shown in section 4.3.2, figure 4.9. As the flow
orients the particles strongly, see, e.g., figure 4.5, shear alignment values at high
shear-rates could reach nematic levels in the vicinity of the isotropic-nematic
phase transition. Additionally, the IN spinodal depends on the shear-rate
[87, 78, 157, 83, 84, 85, 158, 86, 38]. In a projection of the free energy surface



RHEOLOGY NEAR THE IN TRANSITION 61

Figure 4.14: Elongational viscosity as a function of volume fraction, ϕ =
(π/4)dL2ν, for fdY21M (L=0.91 µm, Lp = 9.9 µm) in a glycerol-based buffer.
The lines are theoretical predictions, equations 2.26 (dashed), and 2.27 (full),
for the given aspect ratios indicated in the legend.

of rod-like suspensions into the shear-rate/concentration plane, the isotropic-
nematic spinodal line can be visualized as a function of the two variables
fIN = fIN (ϕ, γ̇). In order to induce a phase transition by enhancing the shear-
rate, therefore, the derivative ∂fIN/∂ϕ would have to be negative over a certain
range of γ̇.

If this were the case, an instability of flow along the velocity gradient direction
would be expected, called gradient shear banding instability (GSBI). The
instability, thereby, arises from a phase transition induced only in a certain part
of the gap of the Couette cell where the flow rate has a magnitude corresponding
to ∂fIN/∂ϕ < 0. Since the liquid in parts of the gap would change its phase,
the actual shear-rate would change abruptly at a certain position along the
gradient direction. Therefore, a GSBI might be detected experimentally by
probing the velocity profile of the liquid along the gradient direction. Due to
the difference in shear-rates, the velocity profile then shows different slopes in
different parts of the channel with a certain transition regime between them.
The transition regime could be called the phase boundary layer. Another option
of detecting a GSBI is conducting steady-state shear flow and measuring the
shear stress as a function of shear-rate. The slope of the curve is called the
shear thinning parameter, m, defined by the relation Σ21 = kγ̇m. We remark
that we call both the exponent in this power-law, m, as well as the exponent
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in the Carreau equation, n, shear thinning parameter, since they are directly
proportional to each other with n = m− 1. It has been reported for manifold
systems that a shear thinning parameter m ≪ 1 indicates a flow instability
[159, 160, 161, 162]. Therefore, a locally strong shear thinning behavior points
in the direction of an instability. To characterize a GSBI fully, a combination
of both measurements is ideal.

An additional factor that influences the flow behavior of rod-like viruses near
a phase boundary is the salt content of the buffer. Since the Debye double
layer thickness around the virus increases with decreasing salt content [70], the
IN spinodal point also shifts to lower volume fractions. Limited experiments
on rods exist, however, where the spinodal line is probed as a function of salt
content [163], although experiments on xanthan gum [159] and wormlike micelles
[164] both show a strong dependence on the salt concentration. Therefore, also
the salt content of the Trizma buffer is varied in this experimental investigation.
Three buffers with ionic strengths of 100, 20, and 1 mM are used for this purpose.
The Debye double layer thickness varies for all ionic strengths, yielding effective
virus thicknesses of 10.5, 18, and 25 nm [70].

Figure 4.14 shows the steady state shear behavior for three concentrations
of fdY21M in a 100 mM ionic strength Trizma buffer. Three regions can be
distinguished: In the low and high shear-rate regimes, the system shows an
increasing shear stress with increasing shear-rate with a constant slope, m.
In the intermediate shear-rate region, the slope changes to lower values. The
shaded area marks this region. Here, the probability for shear banding is
the largest. As explained above, the concentration plays a key role. Indeed,
only for concentrations sufficiently close to the isotropic binodal , the curves
flatten significantly in this regime. Here, the highest probed concentration
is ϕ = 0.97ϕI , where the experimentally measured value for ϕI , reported in
table 3.2, was used. According to theoretical investigations [83, 84, 85, 158, 86],
this is close enough to the isotropic nematic spinodal line to detetct a GSBI.
However, the value for m is not low enough for suspensions in this high ionic
strength buffer to be suspicious for a GSBI to occur. For other systems, values
between m = 0.1 − 0.038 have been reported in the case of shear banding
[165, 161]. Here, the steepest shear thinning region is characterized by m = 0.43
which is expected to be too high for the occurrence of a GSBI.

Figure 4.16 shows the shear stress as a function of shear-rate for varied salt
content of the fdY21M suspension at concentrations sufficiently close to the
isotropic binodal point. Table 4.1 lists the different concentrations in dependence
of the isotropic binodal point. Figure 4.16 indicates that the value of the shear
thinning parameter in the intermediate shear-rate regime is lowest for an
intermediate salt content of 20 mM. Since a value of m = 0.36 is found for
the lowest ionic strength buffer, this system is not likely to undergo gradient
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Figure 4.15: Shear stress as a function of shear-rate for three different
concentrations of fdY21M (L=0.91 µm, Lp = 9.9 µm) in 100 mM Trizma
buffer. The shaded area marks the regions of lowest shear thinning parameter.
The error bars are vanishingly small.

shear banding in either buffer. Only for very low salt content, where the rods
effectively form a glass, instabilities were reported [66, 166, 167].

Table 4.1: Ionic strength, effective thickness, concentration, and shear thinning
parameter in the shaded area of figure 4.16 relative to the experimentally
estimated isotropic binodal for different samples of fdY21M (L=0.91 µm, Lp =
9.9 µm).

ionic strength deff [24] (Lϕ/d)/(Lϕ/d)I m
mM nm
100 10.5 0.97 0.45
20 18 0.98 0.36
1 60 0.99 0.42

To probe for a GSBI directly, fdY21M in a 20 mM Trizma buffer close to the
IN transition is investigated using flow-LDV. All shear-rates in the interesting
intermediate shear-rate regime, indicated in figure 4.16, are probed. Figure 4.17
shows some exemplaric velocity profiles, v(y/y0)/v0, where v0 is the velocity
of the moving inner wall and the coordinate y points in the gradient direction
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Figure 4.17: Velocity profiles of fdY21M (L=0.91 µm, Lp = 9.9 µm) in an
aqueous 20 mM Trizma buffer close to the experimentally estimated isotropic
spinodal for different shear-rates. The line marks a power law with a shear
thinning parameter m=0.36. The error bars are vanishingly small.

4.5 Summary

The linear and non-linear response of ideal colloidal rods to shear flow as well
as extensional flow was investigated. Interestingly, the non-linear response
could be reasoned on the base of an extended version of Dhont-Briels theory,
employing the tube model for highly concentrated dispersions, at ϕ = 280ϕ∗

and higher. For these dispersions also a master curve could be constructed for
both the scaled viscosity and the orientational ordering, as measured by SANS,
yielding the zero shear viscosity as well as the collective rotational diffusion
coefficient and the isotropic-to-nematic spinodal point. However, the prefactor
for the rotational self-diffusion was much lower than the diffusion at infinite
dilution. In the next chapter, we will show how this factor can be determined
experimentally by studying the response of rods of varying length. On the
contrary, the linear response compared well to the theory by Morse only at low
concentrations. With increasing concentration, the moduli were overestimated
by this theory. As this theory works well for much longer filaments [65], it
suggests that the rods were not long enough to render a sufficiently entangled
system.
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This is also reflected in the very moderate shear thinning of this system, even
at the highest possible concentration in the isotropic phase.

The extensional viscosity, where entanglement does not play a role, was found
to be in good agreement with purely hydrodynamic theory.



Chapter 5

Non-ideal rods

5.1 Introduction

In the previous chapter, we described the rheological response of an ideal
colloidal rod from the linear to the very non-linear regime. On the basis of
an extended version of the available theory, it was possible to describe the
shear-thinning process. We also learned that there still is a signature of the
flexibility of the rod, even though the persistence length is ten times longer than
the contour length. Moreover, the contour length is neither sufficient to cause
a strong shear-thinning nor high moduli in dynamic tests. The tube model
predicts an extremely strong rod-length dependence of the rotational diffusion
[168] and, therefore, of the zero shear viscosity, see equation 2.71. Thus, it
would be interesting to study the effect of length, making use of the accessible
library of filamentous viruses. However, in this library only the contour length
changes and thus also the ratio Lp/L. Hence, the first objective of this chapter
is to study the effect of flexibility and length at the same time, by comparing the
rheological response of dispersions with two viruses of similar length but different
bending rigidity, kBTLp, sections 5.2 and 5.3.1, and of viruses with the same
persistence length but varying contour length, sections 5.3.2 and 5.3.3. This will
enable us to test the predicted length dependence of the tube model. With that
we will also be able to do predictions for the many complex fluids containing
rod-like particles as encountered in biology and industry. Such systems, among
which are F-actin [50, 51, 169], DNA [170, 171, 172, 173], and carbon nanotubes
[45, 46, 47], are known for their very polydisperse length distributions. As we will
show that, indeed, the length dependence of the zero shear viscosity, and with
that the length dependence of the shear-thinning behavior, is extremely strong,
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this also means that the tails of the length distribution of such systems might
significantly influence the rheological response. Using well-defined bidisperse
mixtures of rods with different length, we derive mixing rules that can be applied
to polydisperse systems, see section 5.6. In section 5.5, the dynamics of rod-like
colloids after cessation of shear flow are discussed as an addition to the linear
rheology. Finally, the influence of flexibility and length on the rheology in the
vicinity of the IN phase transition and its potential influence on flow instabilities
is presented in section 5.7.

5.2 Effect of flexibility on the dynamic rheological

response

In section 4.3.1, it is shown that the ideal rod, fdY21M, displays a significant
influence of the flexibility on the LVE behavior. Specifically, the relaxation time
of particle undulation, τflex, as a function of concentration could be measured.
The SAOS response of the ideal rod, thereby, showed an emerging elastic
region at intermediate reciprocal times, but no elastic plateau. To identify
the effect of flexibility on the relaxation time spectrum, we make use of our
library of rod-like viruses and compare two species which are similar in length,
L ≈ 0.9 µm, but differ strongly in their persistence length, namely 9.1 µm for
the ideal rod fdY21M, and 2.1 µm for the flexible fd wild-type virus. Both
species are suspended in glycerol/Trizma buffers at different concentrations and
the dynamics of rods are probed by SAOS.

In figure 5.1, the LVE behavior of both systems is compared. We remark that
the data on fdY21M were already shown in chapter 4. Figure 5.1(a) shows the
complex moduli of fd wild-type at the lowest measured concentration. The
loss modulus predicted by Morse theory [80, 111, 112] is in good agreement
with the measurements, as it is for the stiffer fdY21M virus that was discussed
in the previous chapter. The loss modulus is higher than the elastic modulus
for all accessible frequencies. The first influence of particle flexibility on the
LVE behavior is indicated by the differences between theory and measurement
regarding the storage modulus curve at this low concentration. The measured
storage and loss moduli show an almost constant slope over the given frequency
range. This stands in marked difference to the measured storage modulus of
the stiff system, displaying a curved region at intermediate frequencies. Also,
the high frequency upturn of the storage modulus curve, for estimation see
figure 5.4, is found at lower frequencies for the more flexible virus as compared
to the stiff one, compare figures 5.1(a) and (b). The theoretical description
seems correctly predict the storage modulus of the stiff virus at intermediate
and low frequencies, while it is not in good agreement with the measurements on
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the flexible phage. Since the theory should fully account for flexibility influences
on the LVE behavior, this discrepancy cannot be explained from rheological
data alone. Our hypothesis is that entangled rodlike systems have a certain
tube heterogeneity. The rods diffuse according to the tube model only until
they reach a dead end, where the parallel diffusion is strongly restricted. At
such a locus, the rod rotates without further positional movement until the
surrounding has rearranged in a way that the nearest adjacent tube can be
reached. Then, the rod diffuses according to the tube model again. In this
way, the rotational diffusivities in those two situations differ strongly, such that
rotational diffusivities exist which are partly "smeared" with the undulation
time. Evidence for this can be found in fluorescence microscopy studies for
viruses of different morphology [174]. This could explain also, why no elastic
plateau region is found in our experimental study, but only a hardly visible
crossing over of the moduli curves.

To illustrate the flexibility dependence of the storage modulus, the theoretical
prediction with different particle persistence lengths is shown, figure 5.1(a).
The persistence length of fd wild-type, calculated from microscopy experiments
[70], is 2.8 ± 0.7 µm. Therefore, the theoretical curves for 2.1 µm (black curve),
3.5 µm (blue curve) are shown and compared to the theoretical prediction
for the stiff virus, having a persistence length of 9.1 µm (red curve). It is
obvious that no differences between the theoretical predictions are found in
the low to intermediate frequency range. The only deviations are found in the
high frequency range, where the measurement range of the device terminates.
Nonetheless, we identify the measured upturn of the storage modulus curve for
lower persistence lengths, compare the blue and red curves in figure 5.1(a).

Since the description of the stiff phage is reasonable, the discrepancy for the
flexible rod can be identified as a weakness of the theoretical description.
Apparently, the enhanced flexibility of the fd wild-type leads to a completely
monotonic increase of the storage modulus with increasing frequency, displaying
no indications for any characteristic time in the measurable range of frequencies.

This, however, changes strongly with enhancing the concentration, see
figure 5.1(c). While Morse theory for dilute systems under-predicts the
magnitude of the storage modulus, as discussed already in section 4.3.1, the
curve form of the storage modulus of fd wild-type displays the predicted changes
in slopes located at the characteristic time of rotational diffusion, compare to
figure 2.2. Since the storage and loss modulus curves touch in this point, the
rotational relaxation time can be identified by the measurement. As indicated
in figure 5.1(c), the rotational relaxation times of both rods are similar. The
calculated value of Dr for fdY21M is 0.22 s−1 and the value for fd wild-type is
0.23 s−1, being roughly a factor 2 lower than the measured values found from
the touching points of these curves.
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At higher concentrations, two crossover points can be found for both systems,
marking the rotational relaxation time and the relaxation time of chain
undulation, see the illustration in section 2.9(b). From a comparison of
figures 5.1(e) and (f), it becomes clear that the elastic region of fd wild-type is
significantly wider than that of fdY21M. Also, the slope of the storage modulus
between the two characteristic times is slightly lower for the more flexible
virus than it is for the stiff system. An enhanced particle flexibility, therefore,
broadens the elastic region and shifts the relaxation time of chain undulation
to smaller values.

To clarify this effect of particle flexibility on the LVE behavior, the touching
(open symbols) and crossover points (closed symbols) for both systems are
compared in figure 5.2. The touching points and lower frequency crossover
points indicate the rotational diffusion coefficients for both rods as a function
of concentration. The increase of the associated relaxation time with increasing
concentration is predicted by Morse in accordance with the tube model. The
measurement suggests that despite the difference of experiment and theory in
terms of magnitudes of those crossover points, the concentration dependence is
similar. For either rod-like system, seemingly independent of the stiffness, the
rotational diffusion coefficient decreases with increasing concentration varying
roughly between 0.06 and 0.4 s−1. The concentration dependence of τr points
in the direction that the rotational diffusion measured by the lower frequency
crossover points is indeed reasonably characterized by Dr = D0

r(νL3)−2, see
the lines and full symbols in figure 5.3.

As indicated for the ideal rod, fdY21M, in section 4.3.1, no single relaxation
time characterizing the full LVE behavior of rods exists. Instead, a relaxation
time spectrum must be considered. Additionally, the flexibility of the rods
adds to the "smearing" of relaxation times. As predicted by Odijk [104] for
the isotropic as well as the nematic phase [175] in equilibrium, rod flexibility
changes the characteristic time-scales. Odijk, in particular, developed a criterion
for identifying particles which diffuse according to the tube model and particles
which are more mobile due to constraint release caused by their flexibility. The
second case will be referred to as Odijk regime here. Since the isotropic network
in the quasi-linear response regime is comparable to that in equilibrium, the
Odijk criterion applies to our measurements. For a given tube diameter, Dtube,
the flexibility of the particle starts to play a role if Dtube < L < D

2/3
tubeL

1/3
p .

The tube diameter can be approximated by the mesh size of the rod network,
Dtube ∼ νL2. By comparison to the criterion, both systems, fd wild-type as well
as fdY21M, are not in the Odijk regime, as their deflection lengths, D2/3

tubeL
1/3
p ≈

1.8 ± 0.35 µm for fd and 6.4 ± 0.4 µm for fdY21M, are significantly larger than
their contour lengths. Therefore, the rotational diffusivity of both systems
can be fully characterized by the rotational diffusion coefficients measured via
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Figure 5.2: Touching (open symbols) and crossover points (closed symbols)
of storage and loss modulus as a function of frequency for fd wild-type
(L=0.88 µm, Lp = 2.8 µm) and fdY21M (L=0.91 µm, Lp = 9.9 µm) at
different concentrations. The curves are predictions from Morse theory. The
vertical lines in the middle indicate the theoretical rotational relaxation time
from equation 2.70 for a concentration of Lϕ/d = 2.6, the vertical lines on the
right show the reciprocal undulation time for short chain segments at the same
concentration.

SAOS. Only in the case of rods with higher flexibility than those compared here,
constraint release becomes important, as it was shown for carbon nanotubes
[107].

Thus, flexibility mainly manifests itself at shorter timescales, where SAOS probes
the particle undulation. The higher frequency crossover points in figure 5.2 reveal
a significant difference between the two rod-like systems. The relaxation time
of particle undulation significantly decreases with decreasing persistence length.
This behavior was qualitatively predicted by Morse, but the measurements
show that the widening of the elastic plateau region with increasing flexibility
is more drastic than predicted. The values of τflex are between 1.1 and 2.5 s
for different concentrations of the stiff mutant virus, fdY21M, while the range
broadens strongly in the low frequency direction for different concentrations
of fd wild-type, varying between 0.15 and 2.5 s, see higher frequency crossover
points in figure 5.2.

An additional measurable relaxation time is that of particle undulation with
a wave length significantly smaller than the contour length, τe, which marks
the onset of equal slopes of G′(ω) and G′′(ω), see figure 2.2. Although the
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Figure 5.3: Measured rotational diffusion coefficients from crossover points
(full symbols) versus scaled volume fraction for fd wild-type (L=0.88 µm,
Lp = 2.8 µm) and fdY21M (L=0.91 µm, Lp = 9.9 µm) compared to collective
rotational diffusion coefficients from scaling (open symbols). The full curves
indicate the theoretical rotational diffusion coefficients, Dr, from equation 2.70,
the dotted curves show the theoretical collective rotational diffusion coefficient,
from equation 2.62.

measurable frequency range terminates mostly only two or three points after this
characteristic time, it can be deduced for most concentrations of both systems,
see figure 5.4. From the difference in the shortest relaxation time, see figure 5.2,
one can deduce the tube diameter via Morse theory. The tube diameter of fd
wild-type is Dtube ≈ 0.3 µm and for fdY21M one has Dtube ≈ 0.9 µm, thus
roughly confirming the difference in persistence length between the two rods.

5.3 Shear flow response

In this section, we apply our knowledge from chapter 4, namely that, due to
our ignorance of higher order virials in the Fokker-Planck equation for rods, the
tube model is needed to describe the observed zero shear viscosity and strong
shear-thinning of our systems. By tailoring the length of rods, we are able
to identify the prefactor, c, of the rotational diffusion coefficient, Dr, in the
tube model. This enables us to make quantitative predictions for many types
of rod-like systems using equation 2.73. According to our knowledge, such an



74 NON-IDEAL RODS

Figure 5.4: Illustration of the estimation for τe for fd virus (L=0.88 µm,
Lp = 2.8 µm) at a concentration of 3.2 mg/ml in a glycerol buffer. The red
lines are linear fits to the respective regions of the moduli curves. At the onset
of equal slopes for G′ and G′′, the characteristic time of undulation with a
wavelength shorter than the contour length, τe, is located.

experimental identification has not been accomplished before and is of high
relevance also for industrial purposes.

The rod length of bacteriophages can be changed by bio-engineering, but a
simultaneously L/Lp changes. This becomes obvious from table 3.1, where all
material morphologies are listed: Despite the identical persistence lengths of
fd wild-type, M13k07, Pf1, and M13-mini, the engineered change in length of
course alters L/Lp. As L/Lp changes from M13-mini, L/Lp ≈ 0.11, to Pf1,
L/Lp ≈ 0.7, the importance of constraint release processes in the rotational
diffusion in equilibrium increases according to Odijk [104, 107]. Using Odijk’s
criterion, we can identify that all rods, except of Pf1 should diffuse according
to the tube model. As Pf1 is in the Odijk regime, thus, constraint release
becomes important. Under shear flow, tube dilation takes place, as indirectly
demonstrated in chapter 4. This affects the Odijk criterion in the sense that
the characteristic length scale changes from the tube size, Dtube, to the mean
inter-particle distance, which depends on 〈P2〉 [175]. As we do not know the
theoretical interdependence of these quantities, we need to test for the effect of
bending rigidity, LP kBT , on the rheological behavior of rods to disentangle the
effects of length and stiffness. For this reason, we compare again fd wild-type
(L=0.88 µm, Lp = 2.8 µm) and fdY21M (L=0.91 µm, Lp = 9.9 µm) to study
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the effect of flexibility on the shear flow behavior.

With this result in mind, we proceed to identify the length dependence of the
nonlinear viscosity. The study reveals clear influences of flexibility and length
on the behavior of particles under shear flow. Figure 5.5 shows the shear-
thinning behavior as a function of concentration for all used bacteriophages.
Similar concentrations are marked with the same color markers. Obviously, the
shear-thinning behavior is general and none of the rods show peculiarities in
their viscosity curves. From a comparison of figures 5.5(a) and (b), however, a
difference in the measurable shear-rate range can be found. This difference is
attributed to the disparity in torque certain systems induce on the rheometer.
If the torque is too low, the transient flow behavior seemingly does not display
a steady state, instead the measured torque decreases to 0 after the usual
overshoot, shown in figure 3.3. This is due to the fact that the inbuilt torque
sensor of the ARES-LS rheometer filters out the signal if its magnitude is
comparable to that of the expected noise. Therefore, the low shear-rate data of
certain systems have been discarded.

From a comparison of figures 5.5(a) and (f), it becomes clear that the zero
shear viscosity can be measured for certain systems, while other systems are
shear-thinning already at very low shear-rates. It is indicated that the length of
the particle plays the most important role. While the zero shear viscosity is not
measurable for the high aspect ratio rod, Pf1, see figure 5.5(f), it is measurable
for the shortest rod, M13-mini, at highest concentration, see figure 5.5(g). Using
the Carreau model, see red line in figure 5.5(c), we are nonetheless able to
extract zero shear viscosities for all systems. In section 5.3.2, we show how to
deduce the zero shear viscosity of all samples.

Furthermore, a difference in the shear-thinning parameter, n, can be found:
the slope of the viscosity curve in the intermediate and high shear-rate regime
seems to become steeper with increasing length. This is further analyzed in
section 5.3.3.

5.3.1 Effect of stiffness on the nonlinear rheological response

Before we proceed with testing the effect of particle length on the shear-thinning
behavior of rods, we need to identify the effect of particle flexibility, using the
fd wild-type (L=0.88 µm, Lp = 2.8 µm) and the fdY21M (L=0.91 µm, Lp =
9.9 µm) virus suspended in aqueous Trizma buffer as well as glycerol/Trizma
buffer, for which the bending rigidity, kBTLp, is strongly different, see figure 5.6.
Clearly, the zero shear viscosity of the more flexible fd wild-type is lower than
that of fdY21M. This seems not surprising since, due to its stiffness, the fdY21M
should be able to form a more effective tube in the semidilute concentration
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Figure 5.6: Viscosity as a function of shear-rate for two concentrations of fd
wild-type (L=0.88 µm, Lp = 2.8 µm) and fdY21M (L=0.91 µm, Lp = 9.9 µm)
in (a) aqueous Trizma buffer and (b) glycerol/Trizma buffer. Error bars are
negligibly small.

regime, see [104]. The dynamic data confirm this assertion, see section 5.2.
As the rotational dynamics of both rods are reasonably described by the tube
model, the differences in the rotational diffusion coefficients, however, should
be marginal. Nonetheless, our data suggest that the flexible species explores its
tube more effectively than the stiffer species, thus reducing the stress at low
shear-rates more effectively than the stiffer rod. An effect which we want to
call constraint release here in accordance with the literature [176].

A further influence of particle flexibility can be observed in the intermediate
to high shear-rate regime, where both systems undergo shear-thinning. Here,
the curves of the two viruses cross over and the stiffer rod undergoes a slightly
stronger shear-thinning than the flexible rod. This cannot be explained by tube
dilation alone. If the effect of constraint release continued to be of importance
at higher shear-rates, the non-linear viscosity of the flexible rod should be
lower than that of the stiff rod.Therefore, we propose that our flexible particles
undergo a morphological transition during flow. It was shown that semi-flexible
rods like fd wild-type could form hairpins under steady shear flow, using actin,
for which the persistence length is on the same order as the contour length [150].
This leads to a stronger reduction in viscosity for the stiff virus compared to
its flexible counterpart, since the orientational ordering of hair-pin like objects
is different from that of straight rods. This becomes even more evident from
figure 5.6(b), where the rotational diffusion of both systems is strongly decreased
due to the suspending medium. The differences in viscosity in the high shear-
rate regime are of the same nature but seem to be even more pronounced
compared to the watery system.
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although it is relatively small. As for now, there is no theory available that
quantitatively describes this effect.

5.3.2 Zero shear viscosity and morphological effects

From the raw data shown in figure 5.5, we can obtain the zero shear viscosity,
following the two complementary procedures outlined in section 4.3.2. Either,
we fit the Carreau model to the viscosity curve if the zero shear viscosity plateau
can be measured, see, e.g., figure 5.5(e), or we use the Förster method [63],
shifting the viscosity-orientational ordering curves by an apparent zero shear
viscosity to create a concentration-independent master curve, see figure 5.8,
in case the zero shear viscosity cannot be measured. With the use of both
methods, the zero shear viscosities of all samples can be estimated.

The zero shear viscosity of rod-like colloids has the inverse particle length
dependence of the rotational diffusion coefficient, see equation 2.76. In figure 5.9,
the scaled zero shear viscosity is plotted as a function of the scaled volume
fraction for different viruses. A monotonic increase of η0 with increasing volume
fraction is observed. In addition, a strong length dependence is observed, as
theoretically predicted by the tube model, see equation 2.76.

The theoretical prediction fits the measurements well, except for small
discrepancies in the low concentration regime. This is a clear indication that the
tube model is capable of correctly predicting the strong length dependence of
the rotational diffusion of rods with different morphologies. In general, a global
fit of the measured data can be obtained with a prefactor of of c = 2.7x103 for
Dr , almost a factor 2 higher than the numerical prediction by Teraoka et al.
[2]. In order to include morphological characteristics in the shown theoretical
prediction, the prefactor, c, can be fitted to the individual curves with minimum
standard deviations. The result of this operation is shown in figure 5.20(b),
where the prefactor of the rotational diffusion coefficient is plotted as a function
of effective particle stiffness. We can state that all rods are slender, as c is not
thickness dependent. A small increase in c is found if we compare the prefactor
of fd (third point from the left in figure 5.9(b)) with that of fdY21M (third
point from the right in figure 5.9(b)), which could be interpreted as a hint that
more flexible polymers are effectively experiencing a weaker entanglement than
stiff rods do. This is physically intuitive, since a particle bending away from a
geometric constraint can pass the constraint eventually, while a stiff particle
cannot do so. An exception of the length dependence are the very short rodlike
phages, which seem to diffuse very ineffectively despite their short contour
length. One possible explanation for this observation is that the M13-mini
system has not been cleaned from the reported DNA residuals, but only from
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Figure 5.8: (a) Viscosity as a function of order parameter and (b) Scaled viscosity
as a function of order parameter for Pf1 virus (L=1.96 µm, Lp = 2.8 µm) at
different concentrations. The insets show scattering patterns at a shear-rate of
0.01 s−1 (lower inset) and 100 s−1 (higher inset).
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Figure 5.9: (a) Zero shear viscosity as a function of volume fraction for rods of
different morphology. Lines represent the theoretical prediction, equation 2.76,
with the prefactors, c, shown in (b). (b) Prefactor of the rotational diffusion
coefficient as a function of Lp/L scaled with the effective particle thickness.
The straight line in (b) represents a theoretical prediction by Teraoka et al. [2].

the spherically collapsed coat protein. So far, the measurements for M13-mini
could not be repeated due to the instability of the phages.

5.3.3 Effects of length and thickness on the nonlinear rheo-
logical response

After clarification of the stiffness influences and the morphology dependent zero
shear viscosity of rodlike colloids, the influences of length and thickness on the
shear-thinning behavior can be discussed.

In figure 5.10, the shear-thinning behavior of all rod-like species used in this
study are shown and compared at similar concentrations (compare to the
overview of measurements in figure 5.5). It is obvious that, bearing in mind the
influence of stiffness discussed earlier, the length of rods plays a significant role.
As expected, an increase in contour length leads to an increase in the zero shear
viscosity. For Pf1, which is by far the longest rod, the zero shear viscosity is not
measurable but from the scaling procedure outlined in section 5.3.2, we know
that it has much higher values than that of any other species. The shortest rod,
M13-mini, on the other hand shows a comparatively small zero shear viscosity.
Since flexibility counteracts the influence of length, the shear-thinning behavior
of fdY21M and M13k07 is almost identical, despite the larger length of the latter
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Figure 5.10: Viscosity as a function of shear-rate for (a): fd (L=0.88 µm,
Lp = 2.8 µm), fdY21M (L=0.91 µm, Lp = 9.9 µm), M13k07 (L=1.2 µm,
Lp = 2.8 µm), M13-mini (L=0.33 µm, Lp = 2.8 µm), and Pf1 (L=1.96 µm,
Lp = 2.8 µm) at 4.8 mg/ml in an aqueous buffer and (b) fdY21M (d = 6.6 nm)
and its thicker derivatives (d = 17 nm) at 6.8 mg/ml in the same buffer.

species. Only at intermediate shear-rates, M13k07 shows a higher viscosity
compared to the shorter rod. This, again, points in the direction of excluded
volume playing a decisive role in the intermediate to high shear-rate regime.
Since the more flexible rod M13k07 takes up a higher volume fraction before
the enhanced tube dilation mechanism due to its 20% larger length acts, the
viscosity at these shear-rates remains slightly higher than that of the the stiffer
rod fdY21M.

In contrast to the zero shear viscosity, the shear-thinning parameter decreases
with increasing contour length, as briefly mentioned before section 5.3.1. Both
quantities, as extracted from figure 5.10, are shown as a function of contour
length in figure 5.16. While m decreases monotonically, the zero shear viscosity
of the ideal rod, of course, does not follow the trend observed for the viruses
with identical persistence lengths. Generally, however, an increase in contour
length increases the zero shear viscosity, as discussed before. With an aspect
ratio of 187, the long virus Pf1 has by far the lowest shear-thinning coefficient.
For coefficients in this range, shear banding becomes likely. Therefore, we test
for gradient shear banding in section 5.7.

Figure 5.10(b) highlights the influence of thickness on the flow behavior under
steady state shear. The zero shear viscosity of both thicker samples is higher
than that of the bare fdY21M, while the curves cross at intermediate shear-rates
such that the viscosity of the thicker samples is lower than that of the bare virus
in this regime. At even higher shear-rates, the viscosities of all three samples
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Figure 5.12: (a) Order parameter and (b) scaled shear viscosity as a function of
effective Peclet number for all virus systems and all concentrations (different
concentrations of the same species are plotted with identical markers). Error
bars are omitted for reasons of readability.

coefficients obtained from SAOS. Similar values of both quantities are found
for intermediate concentrations. Additionally, we can use the theoretically
calculated rotational self-diffusion coefficients, Dr, evaluating equation 2.70
with the prefactor c = 2.7x103, and use the scaling to find the upper isotropic-
to-nematic spinodal points, ϕIN , for all systems. Table 5.1 list all experimental
values for the isotropic binodals, ϕI , as well as the spinodals, ϕIN . The result
for fd wild-type is in accordance with measurements by Ripoll et al. [?].

As illustrated by the ideal rod in figure 4.8, the shear-thinning behavior is
caused first and foremost by orientational ordering of the rods. The steepest
increase of orientational ordering could be expected at a Peclet number of 1,
where rotational diffusion is overcome by shear induced flow alignment. The
morphology, however, has a significant effect on the onset of shear-thinning. As
presented in figure 5.12(a), the longer bacteriophages, Pf1 and M13k07, start to
orient already around a Peclet number of 0.1, while the smallest rods, M13-mini,
start orienting around a Peclet number of 5. One can, therefore, conclude that
an increase in length decreases the onset Peclet number of shear-thinning.

In figure 5.12(b), it is seen that the curves for phages of different thickness
display identical onset of shear-thinning. This is interesting, since, on the
one hand, the zero shear viscosities of these species are different due to the
decrease in tube diameter with increasing thickness. On the other hand, the
shear-thinning of the thicker viruses is slightly stronger than the shear-thinning
of the thinner virus, see figure 5.10(b). Those two aspects combined, again,
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reflect the influence of tube dilation on the flow behavior.

Table 5.1: Scaled isotropic binodals from birefringence measurements and
upper isotropic-to-nematic spinodal points from scaling the viscosities and order
parameters in figure 5.12.

virus LϕI/deff LϕIN/deff

fd 4.61 5.8
fdY21M 3.4 4.3

fdY21M peg 4.63 6.5
M13k07 5.62 6.5

M13-mini 3.7 4.9
Pf1 8.37 9.8

The fact that the curves of fd virus and fdY21M in figure 5.12 do not overlap
exemplifies the influence of flexibility on the shear-thinning behavior. This
is also seen from the overlapping of fdY21M and M13k07 in figure 5.10(b).
One can conclude that increasing flexibility increases the onset Peclet number
of shear-thinning. Length and flexibility, therefore, are two counter-playing
influences on the shear-thinning behavior of rods. This is also reflected in the
zero shear viscosities of the different species by comparison of figures 5.5 and
5.10(a), as discussed above.

Since all species experience the same moderate orientational ordering with
concomitant strong shear-thinning, the theoretical prediction suffers from the
same discrepancies as illustrated for the ideal rod in figure 4.12. However,
despite the neglect of flexibility, the theoretical approach, using equation 2.90,
covers the length dependence of the shear-thinning behavior well, see figure 5.131.
Also the prediction of the order parameter agrees better with the measured
values for longer particles as compared to shorter ones. An important aspect is
the inclusion of shear-induced tube dilation, equation 2.72, which enables us to
almost fully understand the shear-thinning behavior of rodlike particles.

5.3.5 Effect of particle stiffness on the biaxiality of the
orientational ordering tensor

As for now, all order parameters shown in chapter 5 are measured in the flow-
vorticity plane. Similar to the orientational ordering of the ideal virus, presented
in section 4.3.2, also the orientational ordering of non-ideal rods should be biaxial.

1It is important to remember that the scaling of the shear-rate with the collective rotational
diffusion coefficient from equation 2.62 leads to a single master curve, independent of the
concentration of particles, for both the theoretical predictions as well as the measured data.
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Figure 5.13: (a) Scaled shear viscosity and (b) order parameter as a function
of effective Peclet number for: Pf1 (L = 1.96 µm), M13k07 (L = 1.2 µm),
and fdY21M (L = 0.91 µm), at all measured concentrations (plotted with
identical markers). The lines are predictions from the newly developed theory,
equation 2.90, using 〈Dr〉 from equation 2.72 with the experimental prefactor
c = 2700. The thin line displays an L−1 dependence of the nonlinear viscosity,
indicative of shear banding. Error bars are omitted for reasons of readability.

The biaxiality, T , results from the identical symmetries of the stress tensor in
planar Couette flow and the orientational ordering tensor and was predicted by
Dhont-Briels theory even for ideal, uniaxial rods. Measurements for the ideal
rod, fdY21M, suggest on the contrary that the orientational ordering in gradient
and vorticity direction is almost identical at low and intermediate shear-rates,
showing even the inverse symmetry of the stress tensor at an effective Peclet
number of 5. Only at high Peclet numbers, the theoretically predicted symmetry
conditions seem to apply. In this section, we focus on the effect of particle
flexibility on the biaxiality.
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Figure 5.14: Biaxiality as a function of the effective Peclet number for (a)
fdY21M (L=0.91 µm, Lp = 9.9 µm) at a concentration of 12.6 mg/ml and fd
(L=0.88 µm, Lp = 2.8 µm) at a concentration of 20 mg/ml and (b) fdY21M and
fd at the same concentrations as in (a) and Pf1 virus at 8.9, 6.9, and 4.9 mg/ml,
all with identical symbols. The inset in (a) shows theoretical predictions from
equation 2.59 at the same concentrations as the measurements in (b).

Figure 5.14(a) compares the biaxiality of the ideal virus, fdY21M, and the
flexible, but similarly long fd virus, both at high concentrations. In contrast to
our observations for ideal rods, the biaxiality of fd virus is an ever increasing
function of the effective Peclet number. Thus, also no sign reversal of T
at intermediate Peclet numbers is found. This points in the direction of a
different stress relaxation behavior of the two species, resulting from different
conformations under shear flow. At high shear-rates, the flexible system is
strongly biaxial with a biaxiality which is even higher than predicted, compare
the maximum value of T for fd in figure 5.14(b) with that of the inset. This could
be an indication that the flexible systems not only does not follow the symmetry
of the flow field, but furthermore undergoes a structural change at high Peclet
numbers. We assume that the achieved state is a bent conformation of rods,
called hairpins. Due to the form of the hairpin and the experimentally observed
orientational ordering of hairpins in shear flow [150, 177], the orientational
ordering of strongly bent rods in the gradient direction becomes significantly
higher compared to that in the vorticity direction. The orientational ordering
of rods and hairpins is schematically shown in figure 5.15. An even stronger
biaxiality at high shear-rates is observed for the very long and Pf1 virus, see
figure 5.14(b). As the behavior stands in marked contrast to the theoretical
prediction, see the inset of figure 5.14(a), we conclude that also in the case of Pf1,
hairpin formation takes place under shear flow. Interestingly, Pf1 shows a sign
change of the biaxiality around Peeff ≈ 1, similar to the ideal rod, fdY21M, but
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its flexible counterpart, fd, the conformational change during steady shear flow
leads to a stronger shear-thinning of the flexible species, while in extensional
flow, the conformation of both rods is straightened. Still, the initially stiffer rods
seem to order even more than the flexible ones, leading to a higher extensional
viscosity of the stiff system in the high extension rate regime probed by CaBER.

A comparison of the elongational viscosities of the two systems as a function
of concentration is shown in figure 5.27. In comparison with the theories of
Batchelor [74] and Shaqfeh and Fredrickson [82], hydrodynamic diameters of
25.1 nm for fd and 21.7 nm for fdY21M can be found. Thus, the hydrodynamic
radius of the stiff rods under extensional flow is roughly the same as that
obtained from steady shear data, while that of fd wild type is larger.

The overshoot viscosity, obtained from the overshoot stress, see figure 3.3, follows
the same trend as the elongational viscosity, see figure 5.17(b). This points in the
direction that, indeed, the response to the two flow fields is drastically different
in terms of the molecule dynamics. Here, additional rheo-SANS measurements
would be required to shed light on the orientational ordering during the stress
overshoot as well as under elongational flow.

Figure 5.17: (a) Elongational viscosity and (b) scaled overshoot viscosity as
a function of the relative volume fraction of particles for fd (L=0.88 µm,
Lp = 2.8 µm) and fdY21M (L=0.91 µm, Lp = 9.9 µm) virus in a glycerol-
based buffer. Lines are predictions from the theory of Batchelor (dashed) and
Shaqfeh and Fredricksen (full) with the given hydrodynamic aspect ratios. The
vertical lines mark the isotropic spinodal points for both samples. Error bars
are negligibly small.

The Trouton ratio as a function of the square root of the second invariant of
the rate of strain tensor is shown in figure 5.18. Despite the small normal stress
differences (usually not measurable in our rheometer setup), we obtain relatively
large Trouton ratios for both samples, comparable to those for e.g. polystyrene
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Figure 5.19: Order parameter versus time for Pf1 virus (L=1.96 µm, Lp =
2.8 µm) at a concentration of 8.8 mg/ml in an aqueous buffer after cessation
of shear from γ̇pre = 10−3 s−1. The horizontal line indicates the value of 〈P2〉
at constant shear and the shaded area at the ordinate its standard deviation.
Theoretical predictions differ in the diffusion coefficient: Dcoll

r ∼ Dr (full),
Dcoll

r ∼ 〈Dr〉 (dotted). The stretch-dashed line shows a fit involving an assumed
relaxation time spectrum (RTS), equation 5.1. Inset: Complex moduli of Pf1
vs. frequency at a concentration of 8.8 mg/ml in the same buffer.

We identify a significant discrepancy between the measurement and the
theoretical predictions using just one single rotational diffusion coefficient.
The full curve corresponds to relaxation with a strongly hindered diffusion
coefficient Dcoll

r = Dr (1 − Lϕ/5d) = cD0
r (1 − Lϕ/5d)

(

νL3
)−2

and the dashed
line corresponds to a relaxation with a prefactor 〈Dr〉 for Dcoll

r , depending on the
orientational ordering tensor at a given time. Both processes are modeled with an
exponential decrease of the order parameter: 〈P2〉(t) = 〈P2〉(0) exp

[

−6Dcoll
r t

]

[168, 180]. The value 〈P2〉(0) is indicated by the horizontal line. It is seen
that the predicted relaxation with either diffusion coefficient is much faster
compared to the observation. The situation, however, reverses for higher applied
shear-rates and corresponding higher initial orientational ordering, as shown in
figure 5.20:

The theoretical prediction including tube dilation, dashed lines in figure 5.20,
is found a little closer to the measurement than the prediction involving Dr,
but still differs strongly from the observed behavior. This can be taken as
an indication that shear induced tube dilation plays a much more significant
role than assumed theoretically. In figure 5.19, corresponding to cessation
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Figure 5.20: Order parameter versus time for Pf1 virus (L=1.96 µm, Lp =
2.8 µm) at a concentration of 8.8 mg/ml in an aqueous buffer after cessation
of shear from γ̇pre = 1 and γ̇pre = 0.32 s−1. The straight lines indicate the
values of 〈P2〉 at constant shear and the shaded areas their standard deviations.
Theoretical predictions differ in the diffusion coefficient: Dcoll

r ∼ Dr (full),
Dcoll

r ∼ 〈Dr〉 (dotted). The stretched-dashed line shows a fit of equation 5.1.

of flow after very low shear, the tube is hardly dilated, while in figure 5.20,
corresponding to intermediate shear-rates, the tube is strongly dilated. One
can observe that the two measured curves in figure 5.20 show almost identical
relaxation behavior, although corresponding to different values of 〈P2〉(0). This
indicates that tube dilation already sets in at relatively low shear-rates and for
shear-rates for which it starts to play an important role, the tube is effectively
destroyed by the prior shear flow.

In addition to the theoretical predictions using just one single relaxation time,
the stretched-dashed lines in figures 5.19 and 5.20 show a theoretical prediction
assuming an underlying relaxation time spectrum, in the spirit of the theory of
Morse, see equation 5.1. The inset of figure 5.19 shows the characteristically
wide elastic region appearing in linear viscoelastic measurements due to the
relatively short characteristic time of particle undulation, τflex, of these phages.
As compared to, e.g., fd virus, τflex of Pf1 virus is roughly halved, corresponding
to an increase of the width of the elastic region of roughly a decade in direction
of higher frequencies. The reason for assuming a spectrum of relaxation times
becomes obvious from figure 5.21, where the content of figure 5.19 is plotted in a
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Figure 5.21: Logarithmized order parameter versus time for Pf1 virus
(L=1.96 µm, Lp = 2.8 µm) at a concentration of 8.8 mg/ml in an aqueous
buffer after cessation of shear from γ̇pre = 10−3 s−1. The straight line indicates
the value of 〈P2〉 at constant shear and the shaded area its standard deviation.
Theoretical predictions differ in the diffusion coefficient: Dcoll

r ∼ Dr (full),
Dcoll

r ∼ 〈Dr〉 (dotted). The stretch-dashed line shows a fit of equation 5.1.

double logarithmic fashion. Clearly, the prediction using a single relaxation time
diverges strongly from the measurement, similar to the case of polymers, seen,
e.g., in figure 5 of reference [181]. This suggests that the addition of multiple
relaxation times with similar exponential behavior is needed for reproducing
the observed relaxation curve. In particular, one could construct a RTS for
rodlike polymers in the same manner as for flexible polymers, such that:

〈P2〉(t) =
1
N

〈P2〉(0)
N

∑

i=1

〈P2〉i exp [−t/τi] . (5.1)

Here, however, as opposed to the usual definition, the RTS is composed
of orientational order parameters, such that a set of order parameters and
relaxation times, {〈P2〉i, τi}, is taken into account instead of a set of relaxation
strengths gi and their corresponding times. The resulting RTS for Pf1 without
tube dilation is shown in figure 5.22(a), where a total number of 5 relaxation
modes was used. For a better data visualization and different from the times





96 NON-IDEAL RODS

orientation via undulation plays a negligible role in the overall diffusion process.
Therefore, the plateau region of the RTS disappears.

In summary, for modest and strong shear flows, tube dilation is exemplified as
the main phenomenon determining the non-equilibrium dynamics of rods. This
underlines the conclusions drawn in section 5.3.4. In order to gain further insight
into the signatures of tube dilation, however, studies of the dynamics of rods
under shear flow in a real time experiment, such as confocal laser microscopy,
would be needed. Only for very weak flows, the full RTS plays a role for the
particle dynamics.

5.6 Rheology of polydisperse suspensions

Naturally, all rodlike polymer suspensions possess a certain degree of
polydispersity with only a few exceptions, such as the viruses used in this
work. Also, most industrially used rod-like systems are polydisperse. In order
to understand the effect of polydispersity on the shear-thinning behavior, one
has to develop mixing rules for the rheometric quantities. Before developing a
mixing rule, we used our library of rods to find the prefactor, c, of the rotational
diffusion coefficient in the tube model, Dr = cD0

r

(

νL3
)−2

, in section 5.3.2.
Here, we apply our knowledge to make a quantitative prediction for a bidisperse
system of rods, where only two species of different length are present in the
mixture. This is a proper starting point for the development of a mixing rule
for polydisperse systems. Here, Pf1 virus (L=1.96 µm, Lp = 2.8 µm) is mixed
with fd virus (L=0.88 µm, Lp = 2.8 µm). It is shown in figure 5.13 that the
shear viscosity of both species is well-understood. For this reason, the mixture
may be used as a benchmark system for polydisperse semiflexible polymers for
which L < Lp.

5.6.1 Zero shear viscosity of bidisperse samples

The two species are mixed according to their volume fractions: ϕ(m) = ϕ(fd)(1−
ρ) + ϕ(pf1)ρ, such that the overall volume fraction of rods in the suspension
remains constant. Then, steady shear is applied to the systems. The chosen
concentration of rods, thereby, needs to be high enough to assure that the
zero shear viscosity can be estimated from the measured data via the Carreau
fitting approach. This requires enough torque for a measurable signal at low
shear-rates. In figure 5.23, the zero shear viscosities of the mixtures are plotted
as a function of the relative volume fraction, ρ = (ϕ(m) −ϕ(fd)/(ϕ(pf1) −ϕ(fd)).
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Figure 5.23: Zero shear viscosity as a function of relative volume fraction for
bidisperse mixtures of fd (L=0.88 µm, Lp = 2.8 µm) and Pf1 (L=1.96 µm,
Lp = 2.8 µm) in an aqueous buffer at a fixed concentration of 4.2 mg/ml. The
line represents the developed mixing rule.

The mixing rule for the zero shear viscosity, following from this linear mixing
rule of the volume fraction, characterized by the relation ϕ ∼ L, see section 2.10,
is highly nonlinear due to the nonlinear length dependence of the tube model.
Assuming that there is no morphology specific interaction between the rods,
we can simply assume that the mean length of particles in the system defines
the mean rotational diffusion coefficient in the tube model, Dr ∼

(

L(m)
)−6

, as

well as the mean free rotational diffusion coefficient, D0
r ∼

(

L(m)
)−3

. Including
this in the definition of the zero shear viscosity, equation 2.76, we derived
the following mixing rule for the description of the zero shear viscosity of the
mixture, see section 2.10:

η0 = ηs

[

1 +
π

90 ln(L(m)/d)
ν(L(m))3 +

π

30c ln(L(m)/d)

(

ν(L(m))3
)3

]

,

where the average length of species in the mixture is L(m) = L(fd)(1 − ρ) +
L(pf1)ρ and the average particle length is ρ = (L(m) −L(fd)/(L(pf1) −L(fd)) =
(ϕ(m) − ϕ(fd)/(ϕ(pf1) − ϕ(fd)). The mixing rule represents the measured data
in figure 5.23 quite well, using a prefactor of c = c(pf1) = 2630 for the diffusion
coefficient of Pf1, obtained from the fitting procedure outlined in section 5.3.2.
Since the dominant species, so the species with higher zero shear viscosity, is the
Pf1 bacteriophage, the prefactor is chosen accordingly. The absolute value of c
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being smaller than the previously estimated 2700 for an ideal, stiff rod reflects
the fact that both species are flexible to a certain extent, although L < Lp.
Since the Pf1 bacteriophage is two times longer than fd, it seems clear that the
stress relaxation mechanism of the mixture is dominated by the dynamics of
the longer species. However, it is interesting to note that apparently no tube
dilation due to the smaller virus takes place. This can be inferred from the
fact that the simple linear mixing rules, included in the description of the zero
shear viscosity, lead to a reasonably good agreement with the measurement.
Nonetheless, it is thinkable that a mixture of a high aspect ratio rod with a
comparatively very low aspect ratio rod displays signs of tube dilation due to
the length disparity. Here, no such effects are measured.

5.6.2 Effects of bidispersity on the shear-thinning behavior

Since the effect of length on the shear-thinning behavior of rods is clearly visible
from figure 5.13, and we gained understanding of the zero shear viscosity and
shear-thinning process, all the ingredients are available to study the effect of
polydispersity on the shear-thinning behavior as well. This is of great practical
use as most rod-like systems, from industry as well as in nature, are polydisperse.
In figure 5.24, the viscosity curves of the different mixtures of the long and
flexible rod, Pf1, with the short and flexible rod, fd, are shown. The zero shear
viscosity plateau is cut off in this figure in order to fit the curves with a power
law, η = kγ̇n, where n = 1−m and k is a constant. This allows us to display the
effect of polydispersity on the shear-thinning behavior. The inset of figure 5.24
displays the shear-thinning parameter, n, as a function of the relative volume
fraction of the mixture, ρ = (L(m) −L(fd)/(L(pf1) −L(fd)). The shear-thinning
parameter can be equivalently obtained by fitting the viscosity curves in the
shear-thinning region with the Carreau equation: η = ηs + (η0 − ηs)/(1 + aγ̇)n.

The power-law fit is used to quantify the newly developed theory, using
equation 2.90 combined with 2.92. The inset of figure 5.24 shows that the shear-
thinning coefficient increases non-linearly with the relative volume fraction. For
completeness, we mention here that the curve can be described by the relation
n(m) = n(fd) + kρα, with k = 0.3 and a slope of α = 0.6, displayed as the line
in the inset of figure 5.24. This could be used for a further investigation of the
seemingly nonlinear nature of the shear-thinning process in bidisperse mixtures
of rods. Nonetheless, it should be emphasized that the data in the inset of
figure 5.24 could be compared with a linear mixing rule for n as well, since the
non-linearity with an exponent α = 0.6 is not strong. This renders the choice
of an appropriate mixing rule difficult. We would assume, however, that there
is a fundamental difference between the linear mixing rule for the zero shear
viscosity and the near-linear mixing rule for the shear-thinning coefficient, since
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Figure 5.24: Viscosity in the shear-thinning regime as a function of shear-rate
for bidisperse mixtures of fd (L=0.88 µm, Lp = 2.8 µm) and Pf1 (L=1.96 µm,
Lp = 2.8 µm) in an aqueous buffer at a fixed concentration of 4.2 mg/ml. The
lines are power-law fits with an exponent, m, given in the inset, and prefactors
k = {0.18, 0.15, 0.1, 0.07, 0.04, 0.02, 0.01} from top to bottom. Inset: Shear-
thinning parameter of the mixture as a function of the relative volume fraction.
The line shows a power law for m with exponent α = 0.6, and prefactor k = 0.3.
Error bars are omitted for reasons of readability.

tube dilation plays an important role for the non-equilibrium diffusivity of rods
in general.

The slight non-linearity of the estimated mixing rule for the shear-thinning
coefficients can be made obvious by comparing the results of equation 2.90,
combined with 2.92, to the measurements of the nonlinear viscosity, see
figure 5.25. Here, we used again the prefactor c = 2600 for the rotational
diffusion coefficients of both rods.

From the comparison of the spacing between measured curves and the spacing
between theoretical curves, the nonlinearity spotted before becomes evident.
Especially, the shear-thinning of the samples holding 30 and 50% Pf1 is much
stronger than predicted by the linear mixing rule. Also, curves holding higher
percentages of Pf1 are more densely spaced compared to the theoretical lines.
Despite some discrepancies between the theoretical prediction and the viscosity
curves of Pf1, it is obvious that the shear-thinning behavior of a rod-like system
is strongly influenced by the relative abundance of two different species. It
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Figure 5.25: Shear viscosity as a function of shear-rate for bidisperse mixtures
of fd (L=0.88 µm, Lp = 2.8 µm) and Pf1 (L=1.96 µm, Lp = 2.8 µm) in an
aqueous buffer at a fixed concentration of 4.2 mg/ml. The lines are predictions
from equation 2.59, using the linear mixing rule, equation 2.92, in 〈Dr〉 with a
prefactor c = 2630. Error bars are omitted for reasons of readability.

seems reasonable, that the particle-interaction under flow changes due to the
bidispersity. Here, we assumed that the particle interaction of a bidisperse
mixture of rods is equivalent to the interaction of two rods of the same
species. Since the theory does not give satisfying results, it is advisable to
additionally employ a polydispersity dependent particle-interaction potential
like that developed by Marrucci and Grizzuti [113], where the inter-particle
potential, presented here in the Dhont-Briels framework, equation 2.57, would
have to be replaced by that of the i-th species present in the mixture:

V i =
5π
8
Li

d
β−1

∑

j

ϕj

(

1 − 3
5

Sj : uu

)

. (5.2)

However, we learned from our experimental investigation of the ideal rod,
chapter 4, that such an effective potential is insufficient to correctly predict
the flow behavior in the Fokker-Planck approach. This might also explain
the differences between this theory and the experiment by Larson and Mead
[114]. We propose that instead of equation 5.2, an inter-particle potential for
polydisperse rods should, at last, also include a revised pair-correlation function.
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We did not develop such an expression yet, but it could be seen as an extension
of the Marrucci-Grizzuti theory and seems to be an interesting future research
topic.

Also, measurements of the dynamics of rods in a bidisperse mixture would be
needed in order to gain a deeper understanding of these rheological results.
Laser confocal microscopy of a sheared bidisperse mixture with two differently
labeled rod-like viruses would be an interesting tool for such an investigation.

5.7 Shear banding close to the isotropic-nematic

transition

In section 4.4, we established that a low shear-thinning coefficient is indispensable
for the occurrence of a gradient shear banding instability, in accordance with the
literature [182, 165, 159]. We also observed that the ideal rod, fd-Y21M, does not
yield strong shear-thinning, which might be related with its relatively moderate
length. As seen in figure 5.10(a), the strongest shear-thinning bacteriophage
is the relatively long Pf1 virus (L = 1.96 µm). In this section, the goal is to
identify the strongest shear-thinning system, which is of course to be found
very close to the IN transition and using the longest particle. In figure 5.26(b),
the difference between shear-thinning coefficients of the ideal rod, fdY21M, and
the longer and more flexible rods m13k07 and Pf1 are plotted as obtained from
flowcurves of the shear stress, Σ21 = Σyx, as a function of shear-rate, all very
close to the I-N transition.

The shear-thinning parameter of Pf1 in the intermediate shear-rate regime
reaches a value of m = 0.2, roughly a factor 1.5 smaller than the shear-thinning
coefficient of fdY21M. This shows that Pf1 is the likeliest of all used rodlike
phages to undergo gradient shear banding, as expected.

In order to test for a GSBI in Pf1 samples which are sufficiently close to the
isotropic nematic spinodal, a combination of SANS and flow-HDLS is used.
SANS, thereby, constitutes another possibility of detecting a GSBI by measuring
the order parameter along the gradient direction. Since the order parameter
strongly depends on the shear-rate, also this quantity should display a sudden
change of slopes along the gradient direction, such as the fluid velocity. This
method is less direct than measuring the flow profile. Figure 5.27 displays the
velocity profiles and orientation profiles of Pf1 in the low and intermediate shear-
rate regime. In accordance with the low shear-thinning coefficients obtained
from the flow curves, mfc, low shear-thinning coefficients, m, are found in both
regimes, see figures 5.27(a) and (c).
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Figure 5.28: Gap scan of Pf1 (L=1.96 µm, Lp = 2.8 µm) at a shear-rate
of 0.015 s−1 in (a) the velocity and (b) the orientational ordering. The line
indicates the velocity profile for a shear-thinning coefficient of 0.17. Error bars
are negligibly small.

5.8 Summary

In this chapter, the effect of length and flexibility on the linear and nonlinear
rheological behavior is investigated. The particle length is clearly identified
as the most important quantity. An increase in length forces the particles
into a strongly entangled network, as described by the tube model, increasing
the zero shear viscosity, the elongational viscosity, and the shear-thinning,
such that for high lengths even shear banding can be provoked. The strong
length dependence of visco-elastic properties also plays a decisive role in length-
polydisperse samples. For the zero shear viscosity of bidisperse samples, where
both species have an aspect ratio larger than 80, however, the tube size seems to
be unaffected, only the shear-thinning, again, increases strongly with increasing
concentration of the longer species relative to the shorter one. Also, the particle
flexibility is of importance for the behavior of rods under shear flow, as both
the zero shear viscosity and the shear-thinning are reduced with increasing
flexibility and the relaxation time spectrum becomes broader, manifesting itself
clearly in relaxation experiments. While the more flexible species shows less
shear-thinning, the elongational viscosity also reduces in comparison with the
stiffer rods, resulting in higher achievable Trouton ratios for the stiffer particles.
From the measured biaxiality of rods with different flexibility, we conclude that
flexible rods undergo hairpin formation under shear flow. This conformational
change underlies our experimental observations in shear as well as elongational
flow.



Chapter 6

Conclusions

Based on the development of a library of ideal and non-ideal monodisperse rodlike
viruses, the linear and nonlinear rheological behavior of rods in the dilute and
especially in the semi-dilute concentration regime, up to the isotropic-nematic
spinodal, is investigated. Generally, these systems undergo shear thinning and
concomitant biaxial orientational ordering in the flow direction. This work
contains guidelines for understanding the effects of non-ideality aspects, such as
particle flexibility and polydispersity, on this behavior.

In accordance with the theory of Morse, however not in perfect correspondence,
small amplitude oscillatory shear experiments performed on the ideal rodlike
virus, fdY21M, prove the existence of a relaxation time spectrum for rods.
The relaxation times for rotational diffusion and chain undulation, therefore,
are quantities which can be measured rheologically. The existence of such a
spectrum is also evident from stress relaxation experiments, investigated using
time resolved rheo-small angle neutron scattering. The non-exponential decay
of the order parameter with time, resulting from these measurements, can only
be fitted using the assumption of several relaxation times. In addition, these
measurements provide indirect evidence for tube dilation.

The importance of reptation as well as tube dilation for the nonlinear rheology
of ideal rods is further established. Various experimental investigations are
compared to theoretical investigations, confirming that without the inclusion of
the tube model as well as tube dilation for the rotational diffusion coefficient as
well as the interaction potential, Doi-Edwards-Kuzuu theory fails to predict the
onset and magnitude of shear thinning of ideal semidilute rodlike suspensions.
Thus, a suitable theoretical description uniting both aspects is carried out.
While the inclusion of reptation in the expression for the rotational diffusion
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coefficient is straight forward and provides us with a quantitative prediction of
the zero shear viscosity, no solution for the full inclusion of a shear mediated
inter-particle potential is found. Under certain strong assumptions, however, a
simple solution to this problem is established which captures the magnitude of
shear thinning quite well.

Flexibility influences on the relaxation time spectrum are found, specifically, a
broadening of the elastic response regime for high concentrations of rods. In
addition, flexibility of the particles hampers the phase transition and lowers the
zero shear viscosity of the suspension. Under strong shear, however, flexible
particles undergo less shear thinning than their stiff counterparts, most probably
due to the formation of hairpins. Hairpin formation under elongational flow is
impossible, leading to the observation that the elongational viscosity has the
same flexibility dependence as the zero shear viscosity, provoking comparatively
large Trouton ratios for stiff rodlike systems in the absence of high normal
forces.

While particle thickness has no influence on the flow behavior of rods, their
length is the most important quantity influencing their rheological response. A
strong increase of the zero shear viscosity with increasing length of the rods
is found experimentally and described theoretically. With increasing length,
such as predicted theoretically, the shear thinning becomes stronger. In very
long systems, sufficiently close to the isotropic-nematic phase transition, shear
thinning becomes so strong that time dependent gradient shear banding is
observed.

Polydispersity of the constituent particles influences both, the particle dynamics
as well as the interactions among particles. From a bidispersity study, it is
concluded that the existence of a tube allows for a linear mixing rule for the
zero shear viscosity of rods. This opens the path for a simple prediction of this
quantity for fully polydisperse rodlike colloids. The shear thinning behavior of
rod mixtures, on the other side, is still poorly understood. The reason is the
complex particle-interaction. Based on the observations in this work, however,
two potential routes towards a solution of this problem are introduced.



Chapter 7

Outlook

For a continuation of the work presented in this thesis, the following topics are
suggested:

Using scaling procedures for the nonlinear viscosity and orientational
ordering curves, we extracted the rotational self-diffusion coefficient as a
function of particle length and concentration from our experimental data,
see sections 4.3.2, 5.2, and 5.3.2. Our results compare well with the tube
model, but we find that tube dilation plays a non-negligible role. In order
to confirm these results, direct observations of fluorescently labeled rods
in quiescent conditions as well as under shear flow are needed, using the
home-built shear-cell in Jülich, combined with a confocal laser microscope.

From rheo-SANS experiments, we concluded that flexible particles undergo
hairpin formation under steady shear flow, see section 5.3.5. This assertion
was used in section 5.3.1 to explain the unusually high hydrodynamic
radius of flexible rods, and in section 5.4 to explain the differences between
shear and elongational viscosity for stiff and flexible rods. Therefore, it
seems important to test for hairpin formation in these systems using laser
confocal microscopy under shear flow.

The same technique should be used in a future investigation in order
to test whether bidisperse species interact in a different manner than
monodisperse species, a conclusion drawn from rheological experiments
presented in section 5.6.2. For this purpose, fd virus and Pf1 virus should
be fluorescently labeled with different colors and their dynamics under
shear should be directly investigated.
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Resulting from disparities between theory and measurements for the
nonlinear rheology of bidisperse rod-like particle suspensions, presented
in section 5.6.2, we advise the derivation of a polydispersity dependent
particle-particle interaction with the aim of explaining the non-equilibrium
shear flow behavior of polydispcerse rod suspensions.

As the comparison of rheological results in shear and elongational flow
showed opposite stiffness dependencies, we further suggest to conduct
rheo-SANS measurements of rods under elongational flow with special
emphasis on the influence of stiffness on the particle dynamics. These
experiments should be highly time-resolved and could be combined with
the already measured rheo-SANS data of rods in start-up flow experiments
(conducted for but not shown in this thesis).

As the experiments on ideal viruses under steady shear flow are still
not completely understood, although the tube dilation mechanism was
introduced in section 2.7, and a strongly simplified non-equilibrium
pair-correlation function was developed in section 2.8, it is suggested
that further research is done on equation 2.84. This could lead to the
development of a shear dependent pair-correlation function under the
least necessary approximations, using the Fokker-Planck equation for N
rods and subsequently reducing the equations to the two particle case.
Such an approach could potentially lead to a complete understanding of
rods in shear flow.
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