000860741 001__ 860741
000860741 005__ 20240711113527.0
000860741 0247_ $$2doi$$a10.1088/1741-4326/aafe8d
000860741 0247_ $$2ISSN$$a0029-5515
000860741 0247_ $$2ISSN$$a1741-4326
000860741 0247_ $$2WOS$$aWOS:000457845500001
000860741 0247_ $$2altmetric$$aaltmetric:54987946
000860741 037__ $$aFZJ-2019-01405
000860741 082__ $$a620
000860741 1001_ $$0P:(DE-Juel1)144825$$aReinhart, Michael$$b0$$eCorresponding author
000860741 245__ $$aDiffusion model of the impact of helium and argon impurities on deuterium retention in tungsten
000860741 260__ $$aVienna$$bIAEA$$c2019
000860741 3367_ $$2DRIVER$$aarticle
000860741 3367_ $$2DataCite$$aOutput Types/Journal article
000860741 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550591120_30394
000860741 3367_ $$2BibTeX$$aARTICLE
000860741 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860741 3367_ $$00$$2EndNote$$aJournal Article
000860741 520__ $$aThe influence of helium and argon impurities on the deuterium retention in tungsten is investigated by a numerical diffusion model, which treats diffusing depth profiles for deuterium and helium or argon in tungsten, taking into account the suggested effects of helium or argon. With helium, a helium nanobubble layer builds up at the surface of the sample, with depths higher than the penetration depth of the incident helium and deuterium ions. The nanobubbles form a porous network, which allows the release of trapped deuterium by surface recombination and diffusion through the pores to the surface. For argon, only a shallow layer of argon-induced defects exists, which also act as trapping sites for deuterium. A number of experiments with tungsten samples were conducted at the linear plasma device PSI-2 in support of the model. Helium and argon were admixed to deuterium plasma in ratios of up to 8% for otherwise similar exposure conditions. In addition, a variation of ion fluences was performed for investigation of the onset and evolution of the effects of impurities. The model shows that the influence on the deuterium retention both for helium nanobubbles as well as for argon-induced defects depends strongly on the ratio between the thickness of the helium- or argon-affected layer and the penetration depth of deuterium ions.
000860741 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000860741 588__ $$aDataset connected to CrossRef
000860741 7001_ $$0P:(DE-Juel1)130070$$aKreter, A.$$b1
000860741 7001_ $$0P:(DE-Juel1)6784$$aUnterberg, B.$$b2
000860741 7001_ $$0P:(DE-Juel1)162160$$aRasinski, M.$$b3
000860741 7001_ $$0P:(DE-Juel1)157640$$aLinsmeier, Ch.$$b4
000860741 773__ $$0PERI:(DE-600)2037980-8$$a10.1088/1741-4326/aafe8d$$gVol. 59, no. 4, p. 046004 -$$n4$$p046004 -$$tNuclear fusion$$v59$$x1741-4326$$y2019
000860741 8564_ $$uhttps://juser.fz-juelich.de/record/860741/files/8115896_0.pdf
000860741 8564_ $$uhttps://juser.fz-juelich.de/record/860741/files/Diffusion%20model%20of%20the%20impact%20of%20helium%20and%20argon%20impurities%20on%20deuterium%20retention%20in%20tungsten_revised_pdf.pdf$$yRestricted
000860741 8564_ $$uhttps://juser.fz-juelich.de/record/860741/files/Reinhart_2019_Nucl._Fusion_59_046004.pdf$$yRestricted
000860741 8564_ $$uhttps://juser.fz-juelich.de/record/860741/files/8115896_0.pdf?subformat=pdfa$$xpdfa
000860741 8564_ $$uhttps://juser.fz-juelich.de/record/860741/files/Diffusion%20model%20of%20the%20impact%20of%20helium%20and%20argon%20impurities%20on%20deuterium%20retention%20in%20tungsten_revised_pdf.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860741 8564_ $$uhttps://juser.fz-juelich.de/record/860741/files/Reinhart_2019_Nucl._Fusion_59_046004.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860741 8767_ $$88115896$$92019-02-11$$d2019-02-13$$ePage charges$$jZahlung erfolgt$$paafe8d$$z1500 USD
000860741 909CO $$ooai:juser.fz-juelich.de:860741$$popenCost$$pOpenAPC$$pVDB
000860741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144825$$aForschungszentrum Jülich$$b0$$kFZJ
000860741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130070$$aForschungszentrum Jülich$$b1$$kFZJ
000860741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6784$$aForschungszentrum Jülich$$b2$$kFZJ
000860741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b3$$kFZJ
000860741 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157640$$aForschungszentrum Jülich$$b4$$kFZJ
000860741 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000860741 9141_ $$y2019
000860741 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860741 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860741 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNUCL FUSION : 2017
000860741 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860741 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860741 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860741 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860741 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860741 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860741 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860741 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860741 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860741 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000860741 9801_ $$aAPC
000860741 980__ $$ajournal
000860741 980__ $$aVDB
000860741 980__ $$aI:(DE-Juel1)IEK-4-20101013
000860741 980__ $$aAPC
000860741 980__ $$aUNRESTRICTED
000860741 981__ $$aI:(DE-Juel1)IFN-1-20101013