000860808 001__ 860808
000860808 005__ 20240712101005.0
000860808 0247_ $$2doi$$a10.1038/s41586-018-0871-y
000860808 0247_ $$2ISSN$$a0028-0836
000860808 0247_ $$2ISSN$$a1476-4687
000860808 0247_ $$2pmid$$apmid:30700872
000860808 0247_ $$2WOS$$aWOS:000457404000037
000860808 0247_ $$2altmetric$$aaltmetric:54712460
000860808 037__ $$aFZJ-2019-01469
000860808 041__ $$aEnglish
000860808 082__ $$a500
000860808 1001_ $$0P:(DE-HGF)0$$aMcFiggans, Gordon$$b0
000860808 245__ $$aSecondary organic aerosol reduced by mixture of atmospheric vapours
000860808 260__ $$aLondon [u.a.]$$bNature Publ. Group78092$$c2019
000860808 3367_ $$2DRIVER$$aarticle
000860808 3367_ $$2DataCite$$aOutput Types/Journal article
000860808 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554294906_32104
000860808 3367_ $$2BibTeX$$aARTICLE
000860808 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860808 3367_ $$00$$2EndNote$$aJournal Article
000860808 520__ $$aSecondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene ‘scavenges’ hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).
000860808 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000860808 588__ $$aDataset connected to CrossRef
000860808 7001_ $$0P:(DE-Juel1)16346$$aMentel, Thomas F.$$b1$$eCorresponding author$$ufzj
000860808 7001_ $$0P:(DE-Juel1)129421$$aWildt, Jürgen$$b2
000860808 7001_ $$0P:(DE-Juel1)156385$$aPullinen, Iida$$b3
000860808 7001_ $$0P:(DE-Juel1)169671$$aKang, Sungah$$b4$$ufzj
000860808 7001_ $$0P:(DE-Juel1)129345$$aKleist, Einhard$$b5$$ufzj
000860808 7001_ $$0P:(DE-Juel1)161557$$aSchmitt, Sebastian$$b6$$ufzj
000860808 7001_ $$0P:(DE-Juel1)142073$$aSpringer, Monika$$b7
000860808 7001_ $$0P:(DE-Juel1)5344$$aTillmann, Ralf$$b8$$ufzj
000860808 7001_ $$0P:(DE-Juel1)145715$$aWu, Cheng$$b9$$ufzj
000860808 7001_ $$0P:(DE-Juel1)136801$$aZhao, Defeng$$b10$$ufzj
000860808 7001_ $$0P:(DE-HGF)0$$aHallquist, Mattias$$b11
000860808 7001_ $$0P:(DE-HGF)0$$aFaxon, Cameron$$b12
000860808 7001_ $$0P:(DE-HGF)0$$aLe Breton, Michael$$b13
000860808 7001_ $$0P:(DE-HGF)0$$aHallquist, Åsa M.$$b14
000860808 7001_ $$0P:(DE-HGF)0$$aSimpson, David$$b15
000860808 7001_ $$0P:(DE-HGF)0$$aBergström, Robert$$b16
000860808 7001_ $$0P:(DE-HGF)0$$aJenkin, Michael E.$$b17
000860808 7001_ $$0P:(DE-HGF)0$$aEhn, Mikael$$b18
000860808 7001_ $$0P:(DE-HGF)0$$aThornton, Joel A.$$b19
000860808 7001_ $$0P:(DE-HGF)0$$aAlfarra, M. Rami$$b20
000860808 7001_ $$0P:(DE-HGF)0$$aBannan, Thomas J.$$b21
000860808 7001_ $$0P:(DE-HGF)0$$aPercival, Carl J.$$b22
000860808 7001_ $$0P:(DE-HGF)0$$aPriestley, Michael$$b23
000860808 7001_ $$0P:(DE-HGF)0$$aTopping, David$$b24
000860808 7001_ $$0P:(DE-Juel1)4528$$aKiendler-Scharr, Astrid$$b25$$ufzj
000860808 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-018-0871-y$$gVol. 565, no. 7741, p. 587 - 593$$n7741$$p587 - 593$$tNature <London>$$v565$$x1476-4687$$y2019
000860808 8564_ $$uhttps://juser.fz-juelich.de/record/860808/files/126790000442642676135036DEForschunsgzentrum%20J%C3%BC.pdf
000860808 8564_ $$uhttps://juser.fz-juelich.de/record/860808/files/s41586-018-0871-y.pdf$$yRestricted
000860808 8564_ $$uhttps://juser.fz-juelich.de/record/860808/files/126790000442642676135036DEForschunsgzentrum%20J%C3%BC.pdf?subformat=pdfa$$xpdfa
000860808 8564_ $$uhttps://juser.fz-juelich.de/record/860808/files/s41586-018-0871-y.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860808 8767_ $$82676135036$$92019-02-07$$d2019-02-15$$eColour charges$$jZahlung erfolgt$$z2850 GBP
000860808 909CO $$ooai:juser.fz-juelich.de:860808$$popenCost$$pOpenAPC$$pVDB
000860808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16346$$aForschungszentrum Jülich$$b1$$kFZJ
000860808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169671$$aForschungszentrum Jülich$$b4$$kFZJ
000860808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129345$$aForschungszentrum Jülich$$b5$$kFZJ
000860808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161557$$aForschungszentrum Jülich$$b6$$kFZJ
000860808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5344$$aForschungszentrum Jülich$$b8$$kFZJ
000860808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145715$$aForschungszentrum Jülich$$b9$$kFZJ
000860808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136801$$aForschungszentrum Jülich$$b10$$kFZJ
000860808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)4528$$aForschungszentrum Jülich$$b25$$kFZJ
000860808 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000860808 9141_ $$y2019
000860808 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860808 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860808 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860808 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860808 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2017
000860808 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000860808 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000860808 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860808 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860808 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860808 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860808 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000860808 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000860808 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860808 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000860808 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000860808 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNATURE : 2017
000860808 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x0
000860808 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x1
000860808 9801_ $$aAPC
000860808 980__ $$ajournal
000860808 980__ $$aVDB
000860808 980__ $$aI:(DE-Juel1)IEK-8-20101013
000860808 980__ $$aI:(DE-Juel1)IBG-2-20101118
000860808 980__ $$aAPC
000860808 980__ $$aUNRESTRICTED
000860808 981__ $$aI:(DE-Juel1)ICE-3-20101013