001     860808
005     20240712101005.0
024 7 _ |a 10.1038/s41586-018-0871-y
|2 doi
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a pmid:30700872
|2 pmid
024 7 _ |a WOS:000457404000037
|2 WOS
024 7 _ |a altmetric:54712460
|2 altmetric
037 _ _ |a FZJ-2019-01469
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a McFiggans, Gordon
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Secondary organic aerosol reduced by mixture of atmospheric vapours
260 _ _ |a London [u.a.]
|c 2019
|b Nature Publ. Group78092
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1554294906_32104
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Secondary organic aerosol contributes to the atmospheric particle burden with implications for air quality and climate. Biogenic volatile organic compounds such as terpenoids emitted from plants are important secondary organic aerosol precursors with isoprene dominating the emissions of biogenic volatile organic compounds globally. However, the particle mass from isoprene oxidation is generally modest compared to that of other terpenoids. Here we show that isoprene, carbon monoxide and methane can each suppress the instantaneous mass and the overall mass yield derived from monoterpenes in mixtures of atmospheric vapours. We find that isoprene ‘scavenges’ hydroxyl radicals, preventing their reaction with monoterpenes, and the resulting isoprene peroxy radicals scavenge highly oxygenated monoterpene products. These effects reduce the yield of low-volatility products that would otherwise form secondary organic aerosol. Global model calculations indicate that oxidant and product scavenging can operate effectively in the real atmosphere. Thus highly reactive compounds (such as isoprene) that produce a modest amount of aerosol are not necessarily net producers of secondary organic particle mass and their oxidation in mixtures of atmospheric vapours can suppress both particle number and mass of secondary organic aerosol. We suggest that formation mechanisms of secondary organic aerosol in the atmosphere need to be considered more realistically, accounting for mechanistic interactions between the products of oxidizing precursor molecules (as is recognized to be necessary when modelling ozone production).
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mentel, Thomas F.
|0 P:(DE-Juel1)16346
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Wildt, Jürgen
|0 P:(DE-Juel1)129421
|b 2
700 1 _ |a Pullinen, Iida
|0 P:(DE-Juel1)156385
|b 3
700 1 _ |a Kang, Sungah
|0 P:(DE-Juel1)169671
|b 4
|u fzj
700 1 _ |a Kleist, Einhard
|0 P:(DE-Juel1)129345
|b 5
|u fzj
700 1 _ |a Schmitt, Sebastian
|0 P:(DE-Juel1)161557
|b 6
|u fzj
700 1 _ |a Springer, Monika
|0 P:(DE-Juel1)142073
|b 7
700 1 _ |a Tillmann, Ralf
|0 P:(DE-Juel1)5344
|b 8
|u fzj
700 1 _ |a Wu, Cheng
|0 P:(DE-Juel1)145715
|b 9
|u fzj
700 1 _ |a Zhao, Defeng
|0 P:(DE-Juel1)136801
|b 10
|u fzj
700 1 _ |a Hallquist, Mattias
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Faxon, Cameron
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Le Breton, Michael
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Hallquist, Åsa M.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Simpson, David
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Bergström, Robert
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Jenkin, Michael E.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Ehn, Mikael
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Thornton, Joel A.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Alfarra, M. Rami
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Bannan, Thomas J.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Percival, Carl J.
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Priestley, Michael
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Topping, David
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Kiendler-Scharr, Astrid
|0 P:(DE-Juel1)4528
|b 25
|u fzj
773 _ _ |a 10.1038/s41586-018-0871-y
|g Vol. 565, no. 7741, p. 587 - 593
|0 PERI:(DE-600)1413423-8
|n 7741
|p 587 - 593
|t Nature
|v 565
|y 2019
|x 1476-4687
856 4 _ |u https://juser.fz-juelich.de/record/860808/files/126790000442642676135036DEForschunsgzentrum%20J%C3%BC.pdf
856 4 _ |u https://juser.fz-juelich.de/record/860808/files/s41586-018-0871-y.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860808/files/126790000442642676135036DEForschunsgzentrum%20J%C3%BC.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/860808/files/s41586-018-0871-y.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860808
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)16346
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169671
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129345
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161557
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)5344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)145715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)136801
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)4528
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NATURE : 2017
920 1 _ |0 I:(DE-Juel1)IEK-8-20101013
|k IEK-8
|l Troposphäre
|x 0
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 1
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21