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Abstract

A new precision lattice simulation set is analyzed for the equation of state to sixth order. We used lattice results at

imaginary chemical potentials to calculate the Taylor coefficients, from which the pressure, trace anomaly, energy and

entropy density as well as the baryon number can be derived. We discuss an alternative extrapolation strategy and show

first results for zero strangeness chemical potential.
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1. Introduction

The equation of state of the strongly interacting matter has been calculated from first principles by lattice

QCD [1, 2]. The dynamical effect of the charm quark was calculated in [3]. While at LHC energies these

results are satisfactory, for RHIC physics one has to extend the range of the computations to finite densities.

For lattice QCD this is a very difficult task, since the simulated action turns complex when a baryo-chemical

potential is introduced. A remedy for this situation is the calculation of the Taylor expansion coefficients of

e.g. the pressure that represents a small parameter expansion in µB/T [4, 5]. Similar expansion µB/T is also

possible for the transition temperature [6, 7]. In the Beam Energy Scan II program the expansion parameter

µB/T can be as large as 4 at chemical fereze-out, but individual fluid cells can have even higher chemical

potentials [8].

Apart from the zero chemical potential, imaginary values are equally unproblematic to simulate [9, 10,

11]. The transition line [12, 13, 6], fluctuations [14] and the equation of state [15] have been calculated by

studying the chemical potential dependence of thermodynamic observables, such as the chiral condensate,

or, the (imaginary) baryon and other charge densities. The observed dependence on the (imaginary) chemical

potential can be used to extrapolate to real chemical potentials using the analytic nature of the transition [16].
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2. Taylor coefficients from imaginary µB

Recently we have calculated high order baryon fluctuations on an Nt = 12 lattice using imaginary-µB

chemical potentials. Most importantly, we determined the

χB
n (T, µ̂B) =

∂n(p/T 4)

(∂µ̂B)n
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with µ̂B = µB/T for several temperatures as well as imaginary values of the chemical potential 0 ≤ Im µ̂B <

π. All these simulations can be described by the global pressure function:

χB
0 (µ̂B) = c0 + c2µ̂

2
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8
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where cn are the (temperature dependent) Taylor coefficients for the equation of state: n!cn = χ
B
n (T, µ̂B = 0).

We keep the truncated series up to c10 order. We extract the χB
1
(T, µ̂B), . . . , χB

4
(T, µ̂B) quantities from each

simulation and fit these as a function of µ̂B with the corresponding derivative of Eq. (2). For c8 and c10

we introduce priors to stabilize the fit. For the details of the correlated fit over all our ensembles at a

given temperature T see Ref. [17]. Results at different temperatures are not correlated. The fit coefficients

χB
2n

(T, µ̂B = 0) we plot in Fig. 1.
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Fig. 1. Results for χB
2

, χB
4

, χB
6

and an estimate for χB
8

as functions of the temperature, obtained from the single-temperature analysis.

The χB
8

determination was guided by a prior (see [17]). The red curve in each panel corresponds to a simple analytical estimate.

3. Analytical estimate

The pattern in Fig. 1 can be understood as the consequence of a µB dependent transition temperature. To

illustrate this we plotted the baryon density, normalized to µ̂B for zero and an imaginary chemical potential

in the left panel of Fig. 2. The shifting of Tc is numerically given by the κ curvature of the phase diagram,

which we take from Ref. [18]. Using this κ coefficient to rescale the temperature axis by (1 − κµ̂2
B
) we find

that the rescaled µB = 0 curve well reproduces our direct lattice result at imaginary µB.

Turning this observation into an ansatz, we can now model χB/µ̂B(T, µ̂B) using the given κ coefficient

and our χ2
B

result from the first panel of Fig. 1. These assumed functions can be analyzed for their µ̂B
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dependence at fixed T and the Taylor coefficients can be calculated. The resulting curves are shown and

compared to the lattice results in red in Fig. 1. For such a simple ansatz the agreement is remarkable.

What do we learn from the approximate agreement between the analytic estimate and the lattice result?

If this simple ansatz was exact, the baryon density could also be extended to real finite density. Since the

strength of the transition is µB-independent in this construction this ansatz assumes the absence of a critical

end point. As long as a lattice simulation is consistent with this simple ansatz, it is also consistent with the

scenario without a critical end point.
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Fig. 2. Left: χB
1

(T, µ̂B) as a function of the temperature for zero and a typical fixed imaginary µ̂B value. The inflection point marks

the transition, which is at a higher temperature for imaginary µ̂B. The imaginary µ̂B result (blue error bars) is very close to the shifted

µB = 0 result (violet curve). Right: Using the analytical estimates for χB
n as Taylor coefficients we extrapolated to µ̂B = 2.5 and plotted

the baryon density. The truncation of the Taylor series introduces artificial inflection points.

4. Alternative extrapolation

Having a high order Taylor expansion of the pressure does not necessarily gives an accurate description

of the equation of state. In the right panel of Fig. 2 we show four truncations of the Taylor series. Keeping

only χB
2

(LO) or χB
4

(NLO) the results are plausible. However, higher orders introduce “wiggles” that might

destabilize the hydrodynamic application where it is used. The reason for this behaviour is the oscillatory

pattern of high χB
n coefficients, which in turn, is caused by the µB dependent transition temperature. In the

transition region these coefficients must extrapolate from the deconfined phase to the confined phase, or the

other way around, depending on the used sign of µ2
B
.

A less problematic prescription could be obtained if the extrapolation did not cross phase boundaries.

Fig. 3 shows an example for such an extrapolation. We connect the points on the QCD phase diagram

with equal χB
1
(T, µ̂B)/µ̂B values and extrapolate these to µ̂B > 0 using a low order polynomial or a rational

function. The contours (once continuum extrapolated) can be used to determine χB
1
(T, µB) at µB > 0. For

this we also need the already continuum extrapolated χB
2

(see Ref. [19]) that associates values to the contour

lines. Here we show results for three lattice spacings, that are lying on top of each other. The extrapolation,

however, introduces significant systematical errors beyond µ̂B > 2, which requires further studies.
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Fig. 3. Contours of fixed baryon-density-over-chemical-potential ratios on the QCD phase diagram. On the left hand side lattice

simulations at imaginary chemical potentials constrain the contours, which are extrapolated to real chemical potentials on the right

hand side. The contour at Tc is consistent with the curvature of the transition line.
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