001     860817
005     20210130000625.0
024 7 _ |a 10.1073/pnas.1821638116
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a pmid:30808751
|2 pmid
024 7 _ |a WOS:000459694400044
|2 WOS
024 7 _ |a altmetric:55314990
|2 altmetric
024 7 _ |a 2128/22885
|2 Handle
037 _ _ |a FZJ-2019-01472
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Litschko, Christof
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins
260 _ _ |a Washington, DC
|c 2019
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1568963684_22608
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA−/E−/H− and racE− mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brühmann, Stefan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Csiszár, Agnes
|0 P:(DE-Juel1)128805
|b 2
700 1 _ |a Stephan, Till
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dimchev, Vanessa
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Damiano-Guercio, Julia
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Junemann, Alexander
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Körber, Sarah
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Winterhoff, Moritz
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Nordholz, Benjamin
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ramalingam, Nagendran
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Peckham, Michelle
|0 0000-0002-3754-2028
|b 11
700 1 _ |a Rottner, Klemens
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Merkel, Rudolf
|0 P:(DE-Juel1)128833
|b 13
700 1 _ |a Faix, Jan
|0 0000-0003-1803-9192
|b 14
773 _ _ |a 10.1073/pnas.1821638116
|g p. 201821638 -
|0 PERI:(DE-600)1461794-8
|n 9
|p 3594-3603
|t Proceedings of the National Academy of Sciences of the United States of America
|v 116
|y 2019
|x 1091-6490
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/3594.full.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/Fig%201.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/Fig%202.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/Fig%203.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/Fig%204.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/Fig%205.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/Fig%206.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/Fig%207.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860817/files/Fig%208.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/860817/files/Litschko%20et%20al-Revision%20PNAS.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/3594.full.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Litschko%20et%20al-Revision%20PNAS.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Fig%201.pdf?subformat=pdfa
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Fig%202.pdf?subformat=pdfa
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Fig%203.pdf?subformat=pdfa
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Fig%204.pdf?subformat=pdfa
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Fig%205.pdf?subformat=pdfa
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Fig%206.pdf?subformat=pdfa
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Fig%207.pdf?subformat=pdfa
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/860817/files/Fig%208.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860817
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)128833
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2017
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b P NATL ACAD SCI USA : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21