000860846 001__ 860846
000860846 005__ 20240712113240.0
000860846 0247_ $$2doi$$a10.1039/C9TA04275J
000860846 0247_ $$2ISSN$$a2050-7488
000860846 0247_ $$2ISSN$$a2050-7496
000860846 0247_ $$2WOS$$aWOS:000502302300015
000860846 0247_ $$2altmetric$$aaltmetric:75524087
000860846 037__ $$aFZJ-2019-01501
000860846 082__ $$a530
000860846 1001_ $$0P:(DE-HGF)0$$aWagner, Maximilian$$b0$$eCorresponding author
000860846 245__ $$aMechanism of Ion Conductivity through Polymer-Stabilized CsH2PO4 Nanoparticular Layers from Experiment and Theory
000860846 260__ $$aLondon [u.a.]$$bRSC$$c2019
000860846 3367_ $$2DRIVER$$aarticle
000860846 3367_ $$2DataCite$$aOutput Types/Journal article
000860846 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1581085773_26482
000860846 3367_ $$2BibTeX$$aARTICLE
000860846 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860846 3367_ $$00$$2EndNote$$aJournal Article
000860846 520__ $$aElectrodes are currently the primary performance-limiting component in low and intermediate temperature fuel cells. A proven method for improving electrode performance in solid acid fuel cells is to create ever finer nanostructures and thus increase the electrochemically-active surface area. However, this performance enhancement is limited by issues of long-term stability, as well as increasing both the electronic and ionic conduction pathways. Here, we combine a systematic experimental study with a computational model to quantify the effect of (1) the stabilizing polymer polyvinylpyrrolidone as well as (2) the porosity and electrode layer thickness on the average ionic conductivity of the solid acid electrolyte CsH2PO4 in a composite solid acid fuel cell electrode. With a multiscale simulation approach using a combined molecular dynamics and lattice Monte Carlo method, proton conduction through a porous electrode is simulated at mesoscopic timescales while retaining near-atomistic structured evolution. Electrochemical impedance spectroscopy is used to evaluate the porous electrodes obtained via spray drying. Both approaches reveal a similar and significant contribution of the porous electrolyte layer to the overall cell resistance. This indicates that geometrical parameters, as well as stabilizing materials may play an essential role when designing a high-performance solid acid fuel cell.
000860846 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000860846 588__ $$aDataset connected to CrossRef
000860846 7001_ $$0P:(DE-HGF)0$$aDreßler, Christian$$b1
000860846 7001_ $$0P:(DE-Juel1)176513$$aLohmann-Richters, Felix$$b2$$ufzj
000860846 7001_ $$0P:(DE-HGF)0$$aHanus, Kevin$$b3
000860846 7001_ $$0P:(DE-HGF)0$$aSebastiani, Daniel$$b4
000860846 7001_ $$0P:(DE-HGF)0$$aVarga, Aron$$b5
000860846 7001_ $$0P:(DE-HGF)0$$aAbel, Bernd$$b6
000860846 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C9TA04275J$$gVol. 7, no. 48, p. 27367 - 27376$$n48$$p27367 - 27376$$tJournal of materials chemistry / A$$v7$$x2050-7488$$y2019
000860846 8564_ $$uhttps://juser.fz-juelich.de/record/860846/files/c9ta04275j.pdf$$yRestricted
000860846 8564_ $$uhttps://juser.fz-juelich.de/record/860846/files/c9ta04275j.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860846 909CO $$ooai:juser.fz-juelich.de:860846$$pVDB
000860846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176513$$aForschungszentrum Jülich$$b2$$kFZJ
000860846 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000860846 9141_ $$y2019
000860846 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000860846 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860846 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860846 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2017
000860846 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860846 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860846 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860846 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860846 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860846 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860846 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000860846 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2017
000860846 920__ $$lyes
000860846 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
000860846 980__ $$ajournal
000860846 980__ $$aVDB
000860846 980__ $$aI:(DE-Juel1)IEK-14-20191129
000860846 980__ $$aUNRESTRICTED
000860846 981__ $$aI:(DE-Juel1)IET-4-20191129