001     860846
005     20240712113240.0
024 7 _ |a 10.1039/C9TA04275J
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a WOS:000502302300015
|2 WOS
024 7 _ |a altmetric:75524087
|2 altmetric
037 _ _ |a FZJ-2019-01501
082 _ _ |a 530
100 1 _ |a Wagner, Maximilian
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Mechanism of Ion Conductivity through Polymer-Stabilized CsH2PO4 Nanoparticular Layers from Experiment and Theory
260 _ _ |a London ˜[u.a.]œ
|c 2019
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581085773_26482
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electrodes are currently the primary performance-limiting component in low and intermediate temperature fuel cells. A proven method for improving electrode performance in solid acid fuel cells is to create ever finer nanostructures and thus increase the electrochemically-active surface area. However, this performance enhancement is limited by issues of long-term stability, as well as increasing both the electronic and ionic conduction pathways. Here, we combine a systematic experimental study with a computational model to quantify the effect of (1) the stabilizing polymer polyvinylpyrrolidone as well as (2) the porosity and electrode layer thickness on the average ionic conductivity of the solid acid electrolyte CsH2PO4 in a composite solid acid fuel cell electrode. With a multiscale simulation approach using a combined molecular dynamics and lattice Monte Carlo method, proton conduction through a porous electrode is simulated at mesoscopic timescales while retaining near-atomistic structured evolution. Electrochemical impedance spectroscopy is used to evaluate the porous electrodes obtained via spray drying. Both approaches reveal a similar and significant contribution of the porous electrolyte layer to the overall cell resistance. This indicates that geometrical parameters, as well as stabilizing materials may play an essential role when designing a high-performance solid acid fuel cell.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Dreßler, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lohmann-Richters, Felix
|0 P:(DE-Juel1)176513
|b 2
|u fzj
700 1 _ |a Hanus, Kevin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sebastiani, Daniel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Varga, Aron
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Abel, Bernd
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1039/C9TA04275J
|g Vol. 7, no. 48, p. 27367 - 27376
|0 PERI:(DE-600)2702232-8
|n 48
|p 27367 - 27376
|t Journal of materials chemistry / A
|v 7
|y 2019
|x 2050-7488
856 4 _ |u https://juser.fz-juelich.de/record/860846/files/c9ta04275j.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/860846/files/c9ta04275j.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:860846
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)176513
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM A : 2017
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-14-20191129
|k IEK-14
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-14-20191129
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-4-20191129


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21