000860975 001__ 860975
000860975 005__ 20210130000702.0
000860975 0247_ $$2doi$$a10.1039/C8SM01948G
000860975 0247_ $$2ISSN$$a1744-683X
000860975 0247_ $$2ISSN$$a1744-6848
000860975 0247_ $$2pmid$$apmid:30418450
000860975 0247_ $$2WOS$$aWOS:000459588200009
000860975 0247_ $$2altmetric$$aaltmetric:51092173
000860975 0247_ $$2Handle$$a2128/22834
000860975 037__ $$aFZJ-2019-01608
000860975 082__ $$a530
000860975 1001_ $$00000-0002-3113-7734$$aKelly, Elaine A.$$b0
000860975 245__ $$aProbing the dynamic self-assembly behaviour of photoswitchable wormlike micelles in real-time
000860975 260__ $$aLondon$$bRoyal Soc. of Chemistry$$c2019
000860975 3367_ $$2DRIVER$$aarticle
000860975 3367_ $$2DataCite$$aOutput Types/Journal article
000860975 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1551194083_11986
000860975 3367_ $$2BibTeX$$aARTICLE
000860975 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860975 3367_ $$00$$2EndNote$$aJournal Article
000860975 520__ $$aUnderstanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium cis- and trans-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) (C8AzoOC8E4) using small-angle neutron scattering (SANS). We show that the incorporation of in situ UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C8AzoOC8E4 could switch between wormlike micelles (trans native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked in situ through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.
000860975 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000860975 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000860975 588__ $$aDataset connected to CrossRef
000860975 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000860975 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000860975 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000860975 7001_ $$0P:(DE-Juel1)171614$$aHouston, Judith$$b1$$ufzj
000860975 7001_ $$00000-0003-2956-4857$$aEvans, Rachel C.$$b2$$eCorresponding author
000860975 773__ $$0PERI:(DE-600)2191476-X$$a10.1039/C8SM01948G$$gVol. 15, no. 6, p. 1253 - 1259$$n6$$p1253 - 1259$$tSoft matter$$v15$$x1744-6848$$y2019
000860975 8564_ $$uhttps://juser.fz-juelich.de/record/860975/files/c8sm01948g.pdf$$yRestricted
000860975 8564_ $$uhttps://juser.fz-juelich.de/record/860975/files/c8sm01948g.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860975 8564_ $$uhttps://juser.fz-juelich.de/record/860975/files/Probing_the_Dynamic_Self-Assembly_Behaviour_of_Photoswitchable_Wormlike_Micelles_in_Real_Time_v1.pdf$$yOpenAccess
000860975 909CO $$ooai:juser.fz-juelich.de:860975$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000860975 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171614$$aForschungszentrum Jülich$$b1$$kFZJ
000860975 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000860975 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000860975 9141_ $$y2019
000860975 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860975 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000860975 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOFT MATTER : 2017
000860975 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000860975 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860975 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860975 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860975 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000860975 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000860975 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000860975 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000860975 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860975 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000860975 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000860975 920__ $$lyes
000860975 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000860975 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000860975 980__ $$ajournal
000860975 980__ $$aVDB
000860975 980__ $$aUNRESTRICTED
000860975 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000860975 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000860975 9801_ $$aFullTexts