000860986 001__ 860986
000860986 005__ 20220930130207.0
000860986 0247_ $$2doi$$a10.2967/jnumed.119.225680
000860986 0247_ $$2ISSN$$a0022-3123
000860986 0247_ $$2ISSN$$a0097-9058
000860986 0247_ $$2ISSN$$a0161-5505
000860986 0247_ $$2ISSN$$a1535-5667
000860986 0247_ $$2ISSN$$a2159-662X
000860986 0247_ $$2pmid$$apmid:30850492
000860986 0247_ $$2WOS$$aWOS:000488537100016
000860986 037__ $$aFZJ-2019-01616
000860986 082__ $$a610
000860986 1001_ $$0P:(DE-Juel1)131773$$aGeisler, Stefanie$$b0
000860986 245__ $$aTreatment-related uptake of O-(2-[ 18 F]fluoroethyl)-L-tyrosine and L-[methyl- 3 H]-methionine after tumor resection in rat glioma model
000860986 260__ $$aReston, Va.$$bSNM$$c2019
000860986 264_1 $$2Crossref$$3online$$bSociety of Nuclear Medicine$$c2019-03-08
000860986 3367_ $$2DRIVER$$aarticle
000860986 3367_ $$2DataCite$$aOutput Types/Journal article
000860986 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1575288008_12155
000860986 3367_ $$2BibTeX$$aARTICLE
000860986 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000860986 3367_ $$00$$2EndNote$$aJournal Article
000860986 520__ $$aAssessment of residual tumor after resection of cerebral gliomas can be difficult with MRI and may be improved by amino acid PET. The aim of this experimental study was to investigate uptake of (2-[18F]fluoroethyl)-L-tyrosine (18F-FET) and L-[methyl-3H]-methionine (3H-MET) in residual tumor after surgery and possible false positive uptake in treatment-related changes. Methods: F98 or GS-9L rat gliomas were implanted into the brain of 64 rats. Tumors were resected after one week of tumor growth and sham surgery was performed in additional 10 animals. At different time points after surgery (1, 2, 3, 7, 14-16 days), rats underwent ex vivo dual tracer autoradiography using 18F-FET and 3H-MET. Histological slices were evaluated by immunostainings for cell density and astrogliosis. Tracer uptake was determined by regions of interest and quantified by lesion-to-brain ratios (L/B). Four animals underwent PET to examine time activity curves of 18F-FET uptake. Results: Treatment-related uptake with a mean L/B of 2.0 ± 0.3 for 18F-FET and a mean L/B of 1.7 ± 0.2 for 3H-MET was noted at the rim of the resection cavity in the first week after surgery which decreased significantly by 14-16 days (P < 0.01). Treatment-related tracer uptake was significantly higher for 18F-FET than for 3H-MET (P < 0.001). Reactive astrogliosis was noted in the vicinity of the resection cavity from the second day after surgery. Time-activity curves of 18F-FET uptake in those areas revealed constantly increasing uptake. Conclusion: Surgery may induce significant treatment-related 18F-FET and 3H-MET uptake in the vicinity of the resection cavity in the first week after surgery presumably caused by reactive astrogliosis. Assessment of residual tumor after surgery by amino acid PET seems to be more reliable after an interval of 14 days.
000860986 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000860986 588__ $$aDataset connected to CrossRef
000860986 7001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b1
000860986 7001_ $$0P:(DE-Juel1)173023$$aNiemietz, Nicole$$b2
000860986 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b3
000860986 7001_ $$0P:(DE-HGF)0$$aRapp, Marion$$b4
000860986 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b5
000860986 7001_ $$0P:(DE-Juel1)144347$$aWilluweit, Antje$$b6
000860986 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b7
000860986 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b8
000860986 7001_ $$0P:(DE-HGF)0$$aSabel, Michael$$b9
000860986 7001_ $$0P:(DE-Juel1)131816$$aCoenen, Heinrich Hubert$$b10$$ufzj
000860986 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b11
000860986 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b12$$eCorresponding author
000860986 77318 $$2Crossref$$3journal-article$$a10.2967/jnumed.119.225680$$b: Society of Nuclear Medicine, 2019-03-08$$pjnumed.119.225680$$tJournal of Nuclear Medicine$$x0161-5505$$y2019
000860986 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.119.225680$$gp. jnumed.119.225680 -$$n10$$p1373-1379$$tJournal of nuclear medicine$$v60$$x0161-5505$$y2019
000860986 8564_ $$uhttps://juser.fz-juelich.de/record/860986/files/J%20Nucl%20Med-2019-Geisler-jnumed.119.225680.pdf$$yRestricted
000860986 8564_ $$uhttps://juser.fz-juelich.de/record/860986/files/J%20Nucl%20Med-2019-Geisler-jnumed.119.225680.pdf?subformat=pdfa$$xpdfa$$yRestricted
000860986 8767_ $$8AK1E6B879D95$$92019-02-21$$d2019-02-21$$ePublication charges$$jZahlung erfolgt$$lKK: Barbers$$z450 USD
000860986 909CO $$ooai:juser.fz-juelich.de:860986$$pOpenAPC$$pVDB$$popenCost
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131773$$aForschungszentrum Jülich$$b0$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b1$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173023$$aForschungszentrum Jülich$$b2$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b3$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b5$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144347$$aForschungszentrum Jülich$$b6$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b7$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b8$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131816$$aForschungszentrum Jülich$$b10$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b11$$kFZJ
000860986 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b12$$kFZJ
000860986 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000860986 9141_ $$y2019
000860986 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2013
000860986 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000860986 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000860986 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000860986 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000860986 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000860986 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000860986 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000860986 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000860986 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000860986 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000860986 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2013
000860986 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000860986 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000860986 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000860986 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x3
000860986 980__ $$ajournal
000860986 980__ $$aVDB
000860986 980__ $$aI:(DE-Juel1)INM-4-20090406
000860986 980__ $$aI:(DE-82)080010_20140620
000860986 980__ $$aI:(DE-Juel1)INM-5-20090406
000860986 980__ $$aI:(DE-Juel1)INM-3-20090406
000860986 980__ $$aAPC
000860986 980__ $$aUNRESTRICTED
000860986 9801_ $$aAPC