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Abstract. This article focuses on the analysis of three direct sampling indicators

which can be used for recovering scatterers from the far-field pattern of time-harmonic

acoustic measurements. These methods fall under the category of sampling methods

where an indicator function is constructed using the far-field operator. Motivated

by some recent work, we study the standard indicator using the far-field operator

and two indicators derived from the factorization method. We show equivalence of two

indicators previously studied as well as propose a new indicator based on the Tikhonov

regularization applied to the far-field equation for the factorization method. Finally,

we give some numerical examples to show how the reconstructions compare to other

direct sampling methods.
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1. Introduction

In this paper, the inverse problem of recovering the shape of an unknown obstacle

from far-field measurements is considered. Such a problem arises in many physical

applications where one needs to detect structures in a given medium. This has many

applications such as medical imaging or detecting defects in complex material structures.

An important question is if one can construct fast stable algorithms to reconstruct the

‡ Author to whom any correspondence should be addressed.



Analysis of new direct sampling indicators for far-field measurements 2

obstacle with little to no a priori information. One way to achieve this is to employ

a qualitative method (otherwise known as non-iterative or direct methods) such as the

linear sampling method (LSM) which was first proposed in [10] or the factorization

method (FM) which has been applied to acoustic, electromagnetic, and electrostatic

problems in [16] as well as the generalized linear sampling method (GLSM) introduced

in [2] which combines theoretical elements of both the LSM and FM. These methods have

been used to solve multiple inverse shape problems for elliptic [20], hyperbolic [13], and

parabolic [14] systems. The LSM studies the far-field equation and uses the fact that the

(regularized) solution to the far-field equation should become unbounded in the exterior

of the obstacle. The FM gives that the far-field pattern of the fundamental solution

to the Helmholtz equation is in the range of a self-adjoint compact operator defined

by the far-field operator if and only if the sampling point is in the region of interest.

Therefore, appealing to Picard’s Criterion gives an indicator that becomes unbounded

in the exterior of the obstacle by using the eigensystem of a known operator. There has

also been some work in using numerical regularization techniques when applying the

FM in [3]. Recently in [7] and [12] the FM has been extended to reconstructing defects

in a known inhomogeneous media. The GLSM studies the minimizer of a functional

to solve the far-field equation used in the LSM involving the far-field operator and it

is shown that the penalty term in the functional becomes unbounded in the exterior

of the obstacle. In the GLSM the penalty term can be defined by using the operator

from the FM. All of these methods allow one to construct an indicator function W (z)

to recover the unknown obstacle where W (z) is positive in the interior of the obstacle

and is (approximately) zero on the exterior of the obstacle. Therefore, to reconstruct

the obstacle one can plot the computable function W (z) in a region where the unknown

scatterer is assumed to be located. Lately, there has been some interest in analyzing a

so-called direct sampling method (DSM) using the theoretical framework used in the FM

for far-field data (see for e.g. [22] and [21]). These methods have also been studied for

there applicability to reconstruct scatterers from near-field data [9]. The DSM recovers

objects by constructing an indicator function by evaluating an inner-product with the

measured far-field operator and the known far-field pattern of the fundamental solution

to Helmholtz equation. This allows one to prove that these indicators are stable and

computationally cheap to implement. Similar to the other sampling methods one wishes

to show that the DSM indicator has a specific behavior outside the region of interest,

where instead of blowing up outside the obstacle it takes smaller values in the exterior.

Recently, in [22] the DSM using the symmetric factorization of the far-field operator

for time-harmonic acoustic data has been studied and the indicator function

z 7−→
∣∣(Fφz, φz)L2(S)

∣∣
is proposed, where F is the far-field operator and φz is the far-field pattern of the

fundamental solution located at z to Helmholtz equation. The analysis in this paper

works for sound soft/hard, impedance obstacles as well as penetrable isotropic scatterers.

In [22] it is shown that the indicator is strictly positive and decays as |z| → ∞. The



Analysis of new direct sampling indicators for far-field measurements 3

decay is given by bounding the indicator by the Bessel functions evaluated at |z − x|
where x is in the obstacle or on the boundary of the obstacle. It is also shown that

the indicator is equivalent to reverse time migration [9] and the orthogonal sampling

method [23]. Similar analysis was employed in [15] to validate the DSM for elastic

waves as well as the study of its applicability for limited-aperture data. Unlike the other

sampling methods the DSM does not require solving an ill-posed problem or minimizing

a functional at each sampling point which makes it computationally cheaper than its

counterparts. Stability results can be given by simple calculations using basic analytical

tools. This makes these methods advantageous to use in order to recover unknown

obstacles.

Here we propose the use of two indicator functions based on the FM. This research

is motivated by the recent paper [21] where similar indicators are introduced and

analyzed for the multi-static response matrix which is the discrete version of the far-

field operator. The indicators in [21] are based on the theoretical setting of the FM

and one of the proposed indicators is based on a Neumann series approximation to the

FM equation. In this paper, we will analyze the indicator function which uses the FM

operator and prove that the indicator is equivalent to DSM studied in [22] and derive

a new method based on the Tikhonov regularization. The main idea for deriving the

new DSM is based on the factorization of the far-field operator given by F which uses

|F |1/2 = (F ∗F )1/4. If we let the unknown obstacle be denoted by D, then the FM gives

that φz ∈ Range(|F |1/2) ⇐⇒ z ∈ D and our method looks at an approximation of the

Tikhonov regularized solution operator of the equation |F |1/2gz = φz .

The rest of the paper is structured as follows. First, we provide a precise problem

statement in Section 2 and give some preliminary result. In Section 3 we analyze the

first indicator which is defined by an inner-product involving |F |1/2 and φz which was

originally considered in [21]. The authors of [21] did not succeed in showing that

the indicator is equivalent to the one proposed in [22] and here we will show that

the indicators are equivalent. In Section 4 we expand on the idea in [21] to use an

approximate solution operator to define a new indicator function. In order to define our

approximate solution operator we consider using Tikhonov regularization. Section 5 is

devoted to giving some numerical examples of recovering scatterers in two and three

dimensions as well as comparing the new indicators with the DSM indicators to show

that our reconstructions can compete and in some cases outperform the DSM indicator

considered in [22]. In our experiments we see that the reconstructions take seconds to

compute making these methods computationally cheap to implement and analytically

rigorous. Lastly, a short summary is given in Section 6.

2. Problem statement

In our analysis, we will consider the time-harmonic acoustic scattering problem for

anisotropic media. The LSM and FM have been applied to the inverse scattering

problem of recovering the scatterer from the measured far-field pattern in [5] and [18],
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respectively. We now derive two DSMs for this inverse shape problem. To this end, we

formulate the direct scattering problems under consideration in Rd for d = 2 or d = 3.

The scatterer D ⊂ Rd may be made up of multiple simply connected components with

C2 boundary ∂D having unit outward normal ν. We consider the scattering by a plane

incident wave ui(x, ŷ) = eikx·ŷ for a given incident direction ŷ ∈ Rd such that |ŷ| = 1

and wave number k > 0. This gives that the radiating scattered field us(x, ŷ) and the

total field u = us + ui ∈ H1
loc(Rd) satisfy the boundary value problem

∆us + k2us = 0 in Rd \D and ∇ · A(x)∇u+ k2n(x)u = 0 in D (1)

u = us + ui and ∂νAu = ∂ν(u
s + ui) on ∂D (2)

along with the Sommerfeld radiation condition

lim
r→∞

r(d−1)/2 (∂ru
s − ikus) = 0 .

Here the normal and conormal derivative on the boundary is given by ∂νϕ = ν ·∇ϕ and

∂νAϕ = ν · A∇ϕ, respectively, where ϕ is a sufficiently regular function defined on ∂D.

The Sommerfeld radiation condition is assumed to be satisfied uniformly with respect

to x̂ = x/r, r = |x| .
The real-valued coefficient matrix A(x) ∈ C1(D,Rd×d) is symmetric uniformly

positive definite in D and the scalar function n(x) ∈ C(D) is real-valued, denotes

the material parameters of the obstacle D where we assume that I − A and 1 − n are

supported in D. Under these assumptions we have that the scattering problem (1)–(2)

with the radiation condition is well-posed for all ŷ. It can be shown that the radiating

scattered field us has the expansion

us(x, ŷ) = γ
eik|x|

|x|(d−1)/2

{
u∞(x̂, ŷ) +O

(
1

|x|

)}
as |x| → ∞

where the constant

γ =
eiπ/4√
8πk

in R2 and γ =
1

4π
in R3

with u∞(x̂, ŷ) being the far-field pattern depending on the incident direction ŷ and the

observation direction x̂. We now define the far-field operator F : L2(S) 7−→ L2(S)

(Fg)(x̂) =

∫
S
u∞(x̂, ŷ)g(ŷ) ds(ŷ) , where S = unit sphere/circle. (3)

Since the far-field pattern is analytic it is clear that F is a compact operator. The two

indicators we study are given by(
|F |1/2φz, φz

)
L2(S) and

∥∥Pα,ε(|F |)φz∥∥2L2(S) , where φz = e−ikx̂·z .

Since F ∗F is a positive self-adjoint compact operator we can define |F |1/2 = (F ∗F )1/4

via the spectral decomposition. Here, Pα,ε(t) is a polynomial defined on the interval

[0, ‖F‖] that approximates the Tikhonov regularized filter function with regularization

parameter α and accuracy ε of the equation

|F |1/2gz = φz for z ∈ Rd ,
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see Section 4 for details. The merits of developing these new indicators is to theoretically

justify the numerical investigation in [21] for the continuous (and discretized) setting.

We also wish to analyze the new indicators to connect the recent developments for

DSMs to earlier qualitative reconstructive algorithms. In our experiments computing

the singular values/vector as well as constructing the polynomial Pα,ε adds a negligible

increase in computing time for a modest sized far-field matrix.

Before we begin, we will show that the indicator
∣∣(Fφz, φz)L2(S)

∣∣ decays as dist(z,D)

increases for an anisotropic scatterer (see [22] for other scatterers). It has been shown

in [6] that F has the factorization F = H∗TH such that

H : L2(S)→
[
L2(D)

]d+1
is given by Hg = (∇vg, vg)>

where vg is the Herglotz wave function defined as

vg(x) =

∫
S

eikx·ŷg(ŷ) ds(ŷ) .

HereH∗ is the adjoint operator toH and T is a bounded linear operator from
[
L2(D)

]d+1

to itself. We have the identity

(vφz)(x) =

∫
S

e−ik(z−x)·ŷ ds(ŷ) =


2πJ0(k|x− z|) in R2 ,

4πj0(k|x− z|) in R3 ,

where J0 is the zeroth order Bessel function of the first kind and j0 the zeroth order

spherical Bessel function of the first kind (see for e.g. [22]). The factorization of the

far-field operator implies that∣∣(Fφz, φz)L2(S)
∣∣ =

∣∣(THφz, Hφz)[L2(D)]d+1

∣∣
≤ C‖Hφz‖2[L2(D)]d+1

= C‖vφz‖2H1(D) .

Recall that J0(t) and its derivatives decay at a rate of t−1/2 as t → ∞. In R3 we have

that j0(t) and its derivatives decay rate of t−1 as t→∞. Therefore, the above inequality

and the decay of the Bessel functions gives that

Theorem 1. For all z ∈ Rd \D∣∣(Fφz, φz)L2(S)
∣∣ = O

(
dist(z,D)1−d

)
as dist(z,D)→∞.

We then see that the indicator will decay as z moves away from the scatterer D.

Note that Theorem 1 is valid for the case when A and n are complex-valued functions.

3. A factorization based direct sampling method

In this section, we will study the indicator using the operator |F |1/2 = (F ∗F )1/4. It

is well known that one can uniquely recover the scatterer D using the far-field pattern

(see Chapter 6 of [4]). The purpose of analyzing the DSM is to derive stable and
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computationally simple reconstruction algorithms. The stability of the DSMs proposed

in this section have been studied in [22] and [21] (for the discretized case). We will show

that the corresponding indicator functions

WFDSM(z) =
(
|F |1/2φz, φz

)
L2(S) and WDSM(z) =

∣∣(Fφz, φz)L2(S)
∣∣

with φz = e−ikx̂·z are equivalent. This crucial theoretical result is needed to prove the

validity of the new indicator WFDSM(z) which is not established in [21]. Here WFDSM(z)

is the DSM based on the FM and WDSM(z) is the standard DSM studied in [22]. To this

end, we will bound WDSM(z) from above and below by our new indicator WFDSM(z).

Since WDSM(z) decays as the dist(z,D) increases this suggests that we can plot either

function to recover the scatterer.

To begin, we need a few results for the far-field operator defined in (3) that is

associated with (1)–(2) along with the radiation condition. We introduce the scattering

operator associated with this direct scattering problem (1)–(2). The scattering operator

S : L2(S)→ L2(S) is defined by

S = I + 2ik|γ|2F .

Since A(x) and n(x) are assumed to be real-valued, we have that the scattering operator

is unitary, SS∗ = S∗S = I (see for e.g. [4]). Here I denotes the identity operator on

L2(S). This implies that the corresponding far-field operator F : L2(S) → L2(S) is

normal and compact. We can now conclude that F has an orthonormal eigenvalue

decomposition (λj, ψj) ∈ C× L2(S) such that

Fg =
∞∑
j=1

λj(g, ψj)L2(S)
ψj for all g ∈ L2(S) .

Since F is a compact operator we have that |λj| → 0 as j →∞. Provided that the wave

number k is not an interior transmission eigenvalue we have that F is injective with a

dense range (see [4, 6]). This implies that |λj| 6= 0 for all j and that the set {ψj} is a

complete orthonormal set in L2(S). Following the results of [16, Chapter 1] it can be

shown that the far-field operator has the factorization

F = |F |1/2Q|F |1/2 (4)

where we use the eigensystem to define the operators

|F |1/2g =
∞∑
j=1

√
|λj|(g, ψj)L2(S)

ψj and Qg =
∞∑
j=1

λj
|λj|

(g, ψj)L2(S)
ψj .

It is clear that |F |1/2 and Q are bounded linear operators that map L2(S) into itself.

Since F is injective we have that |F |1/2 is a positive self-adjoint compact operator. Since

the scattering operator is unitary we can conclude that for all g ∈ L2(S)∣∣(Qg, g)L2(S)
∣∣ ≥ µ‖g‖2L2(S) and ‖Qg‖L2(S) ≤ ‖g‖L2(S) (5)

for some positive constant µ (see for e.g. Theorem 7.29 in [4] for details).

In [21] the authors did not succeed in bounding WFDSM(z) above by WDSM(z) for

the discretized far-field operator which is what is needed for showing the equivalence of
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these two indicators. From the factorization of the far-field operator (4) and the above

inequality (5) we have the following estimates∣∣(Fφz, φz)L2(S)
∣∣ =

∣∣∣(Q|F |1/2φz, |F |1/2φz)L2(S)

∣∣∣
≥ µ

∥∥|F |1/2φz∥∥2L2(S)

= µ sup
‖ϕ‖L2(S)=1

∣∣∣(|F |1/2φz, ϕ)L2(S)

∣∣∣2
≥ µ

2d−1π

∣∣∣(|F |1/2φz, φz)L2(S)

∣∣∣2
since

‖φz‖2L2(S) = 2d−1π

holds. The above estimate gives that W 2
FDSM(z) will have the same decay as dist(z,D)

increases which is the critical piece missing in the manuscript [21]. We have just about

all we need to prove that the two indicators are equivalent. In order to prove the upper

bound we need one last theoretical lemma for positive operators on a Hilbert space to

prove the equivalence.

Lemma 2. Let T : V → V be a bounded positive operator on a Hilbert space V then we

have that

‖Tv‖2V ≤ ‖T‖(Tv, v)V for all v ∈ V .

Proof. For the proof we refer the reader to [24, Lemma 2.1].

Notice that since F is injective we have that |F |1/2 is a positive operator acting on

the Hilbert space L2(S). Using the above lemma we have that∣∣(Fφz, φz)L2(S)
∣∣ =

∣∣∣(Q|F |1/2φz, |F |1/2φz)L2(S)

∣∣∣
≤
∥∥|F |1/2φz∥∥2L2(S)

≤
∥∥|F |1/2∥∥ (|F |1/2φz, φz)L2(S) .

Thus, we have proven that WDSM(z) is bounded above by WFDSM(z) which implies that

they are equivalent in the sense that
µ

2d−1π
W 2

FDSM(z) ≤ WDSM(z) ≤
∥∥|F |1/2∥∥WFDSM(z) .

Therefore, we have that the following result.

Theorem 3. There exist two positive constants c1 and c2 such that

c1

∣∣∣(|F |1/2φz, φz)L2(S)

∣∣∣2 ≤ ∣∣(Fφz, φz)L2(S)
∣∣ ≤ c2

(
|F |1/2φz, φz

)
L2(S) .

Since we have shown in Theorem 1 that WDSM(z) is bounded by the squared

H1(D) norm of the zeroth order Bessel function in Rd for d = 2 or 3 we have that

WDSM(z) = O
(
dist(z,D)1−d

)
as dist(z,D) → ∞ when the sampling point z ∈ Rd \D

which gives the following result.
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Theorem 4. For all z ∈ Rd \D∣∣∣(|F |1/2φz, φz)L2(S)

∣∣∣2 = O
(
dist(z,D)1−d

)
as dist(z,D)→∞.

Notice that since |F |1/2 is a positive operator the function WFDSM(z) is strictly

positive for all z and as the sampling point moves away from the boundary WFDSM(z)

decays. Using the eigensystem for F we have that

WFDSM(z) =
∞∑
j=1

√
|λj|

∣∣∣(φz, ψj)L2(S)

∣∣∣2
compared to the indicator given by the FM defined as

z 7−→
∞∑
j=1

1

|λj|

∣∣∣(φz, ψj)L2(S)

∣∣∣2 .
Since the eigenvalues tend to zero rapidly one should avoid dividing by them in

practice. The function WFDSM(z) is computed by multiplying by the square roots of

the eigenvalues which will be more stable in the presence of errors in the measured far-

field data. One drawback is that Theorems 1 and 4 only give that the new indicators

decay as the sampling point moves away from the scatterer which may result in low

contrast reconstructions. In [22] it is seen that this can be overcome by raising the new

indicators to the power p > 1 to sharpen the resolution. To recover the scatterer one

can take a level curve of the indicator W p.

Notice that the analysis in this section only requires that the far-field operator

is injective with dense range and is normal which implies the orthonormal eigenvalue

decomposition. The fact that the corresponding scattering operator is unitary is the key

component to the analysis in this section. Therefore, this equivalence of the indicators

holds for any scattering problem where the corresponding scattering operator is unitary.

This is true for the inverse obstacle scattering problem where the scattered field solves

∆us + k2us = 0 in Rd \D and B(us) = −B(ui) on ∂D

along with the Sommerfeld radiation condition. Here the boundary operator is given by

B(ϕ) = ϕ or B(ϕ) = ∂νϕ+ γ(x)ϕ

where γ ∈ L∞(∂D) is non-negative. This implies that WFDSM(z) can be used to recover

sound soft/sound hard, isotropic, and impedance type scatterers.

4. A Tikhonov regularization based direct sampling method

The operator |F |1/2 has been used to recover the scattering objects in previous studies

where one solves the ill-posed equation

|F |1/2gz = φz for z ∈ Rd (6)

which is solvable if and only if the sampling point z ∈ D. One of the main ideas proposed

in [21] is to derive an approximate solution operator to the above equation and use the
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approximate solution operator to define a DSM. In [21] the authors approximate the

solution operator using a Neumann series. Using a Neumann series to approximate

the solution operator amounts to constructing a polynomial that when applied to the

operator acts as the solution operator of (6). The main idea we exploit is to construct

a polynomial that when evaluated at the operator |F | acts as an approximate solution

operator for (6). Here we propose approximating the solution operator using Tikhonov

regularization, which is commonly used in the literature to solve (6) (see for e.g. [8]).

The analysis in this section again appeals to the eigenvalue decomposition. Now,

recall that the orthonormal eigenvalue decomposition of the injective far-field operator

F is given by (λj, ψj) ∈ C \ {0} × L2(S). Therefore, we can define |F |p for p > 0 by

|F |pg =
∞∑
j=1

|λj|p(g, ψj)L2(S)
ψj

where the set {ψj} is an orthonormal basis in L2(S). Note that the Tikhonov regularized

solution of (6) will be denoted gαz and is the unique minimizer of the functional∥∥|F |1/2gαz − φz∥∥2L2(S) + α
∥∥gαz ∥∥2L2(S)

where α > 0 is the regularization parameter. Simple calculations give that the minimizer

gαz satisfies the equation

αgαz + |F |gαz = |F |1/2φz for z ∈ Rd

and using the eigenvalue decomposition we have that

gαz =
∞∑
j=1

√
|λj|

α + |λj|
(φz, ψj)L2(S)

ψj .

We now define the function Γα(t) =
√
t

α+t
which is continuous on the interval [0, ‖F‖]

and we have the solution operator for the Tikhonov regularization of (6) given by the

mapping

φz 7−→
∞∑
j=1

Γα(|λj|)(φz, ψj)L2(S)
ψj . (7)

In general, the regularization parameter α is taken to be small. The parameter α

is chosen to be a fixed but small parameter throughout all the calculations in our

experiments provided in Section 5.

In order to approximate the solution operator in (7) we exploit the fact that for all

α > 0 the function Γα(t) is actually continuous for all t ≥ 0 and therefore we have that

for every ε > 0 there is a polynomial Pα,ε(t) such that

‖Pα,ε(t)− Γα(t)‖L∞(0,‖F‖) < ε. (8)

The approximation of the solution operator is now defined by

Pα,ε(|F |)φz =
∞∑
j=1

Pα,ε(|λj|)(φz, ψj)L2(S)
ψj.
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We have defined the polynomial of the operator |F | via the eigenvalue decomposition as

is commonly done in Linear Algebra. The Tikhonov indicator we propose in this section

for a fixed α positive is defined as the function

WTDSM(z) =
∥∥Pα,ε(|F |)φz∥∥2L2(S) with

∥∥∥∥Pα,ε(t)− √
t

α + t

∥∥∥∥
L∞(0,‖F‖)

≈ 0

where Pα,ε(t) is a polynomial. By definition of Pα,ε(|F |)φz we have that∥∥Pα,ε(|F |)φz∥∥2L2(S) =
∞∑
j=1

P 2
α,ε(|λj|)

∣∣∣(φz, ψj)L2(S)

∣∣∣2
by appealing to the fact that {ψj} is an orthonormal set in L2(S) .

The goal now is to see how the new Tikhonov indicator WTDSM(z) compares to the

indicators studied in the previous sections. To do so, we assume that the regularization

parameter is known and fixed and note that for the polynomial Pα,ε(t) satisfying (8) we

have that

P 2
α,ε(|λj|) ≤ Γ2

α(|λj|) + 2εΓα(|λj|) + ε2 for all ε > 0 and j ∈ N .

Since Γα(t) is continuous for t ≥ 0, we let

Cα = ‖Γα(t)‖L∞(0,‖F‖) <∞

which only depends on α and ‖F‖. Using basic calculus one can easily show that

Cα = max

{
1

2
√
α
,

√
‖F‖

α + ‖F‖

}
.

Now assume that 0 < ε < 1 and estimate∥∥Pα,ε(|F |)φz∥∥2L2(S) ≤
∞∑
j=1

Γ2
α(|λj|)

∣∣∣(φz, ψj)L2(S)

∣∣∣2
+ 2ε

∞∑
j=1

Γα(|λj|)
∣∣∣(φz, ψj)L2(S)

∣∣∣2 + ε2
∞∑
j=1

∣∣∣(φz, ψj)L2(S)

∣∣∣2
≤

∞∑
j=1

Γ2
α(|λj|)

∣∣∣(φz, ψj)L2(S)

∣∣∣2 +
(
2εCα + ε2

)
‖φz‖2L2(S)

=
∞∑
j=1

Γ2
α(|λj|)

∣∣∣(φz, ψj)L2(S)

∣∣∣2 + 2d−1π
(
2εCα + ε2

)
.

Notice that by definition Γ2
α(|λj|) ≤ |λj|/α2 which gives that∥∥Pα,ε(|F |)φz∥∥2L2(S) ≤

1

α2

∞∑
j=1

|λj|
∣∣∣(φz, ψj)L2(S)

∣∣∣2 + C(α, d)ε

where C(α, d) is a positive constant depending on the regularization parameter and the

dimension. By definition of |F |1/2 it is clear that∥∥Pα,ε(|F |)φz∥∥2L2(S) ≤
1

α2

∥∥|F |1/2φz∥∥2L2(S) + C(α, d)ε .

Therefore, by appealing to estimates in Section 3 we have the following result.
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Theorem 5. For all fixed α > 0 we have∥∥Pα,ε(|F |)φz∥∥2L2(S) ≤
1

µα2

∣∣(Fφz, φz)L2(S)
∣∣+O(ε) as ε→ 0

where the constant µ is defined in (5) and the polynomial Pα,ε(t) satisfies (8).

The above theorem suggests that the Tikhonov indicator WTDSM(z) decays at least

as fast as the standard DSM indicator WDSM(z) (up to order ε) and therefore we expect

that WTDSM(z) has to approximately decay at a rate of dist(z,D)1−d by Theorem 1

which implies that∥∥Pα,ε(|F |)φz∥∥2L2(S) ≤ Cdist(z,D)1−d +O(ε) for z ∈ Rd \D

as ε → 0. Notice that again the analysis of this section requires that the far-field

operator is injective with dense range and is normal which holds for sound soft/sound

hard, isotropic, and impedance type scatterers. Therefore, the above estimate for the

indicator WTDSM(z) holds for these scatterers as well.

5. Numerical validation of the indicators

In this section, we provide some numerical examples for the three indicator functions

studied in the previous sections. To this end, we will use synthetic far-field data in our

numerical experiments. All of our experiments are done with MATLAB 2018a on an

iMac with a 4.2 GHz Intel Core i7 processor with 8GB of memory. We will denote the

discretized far-field operator as

F =
[
u∞(x̂i, ŷj)

]M
i,j=1

where x̂i, ŷj are in S = unit circle/sphere

where M is the number of incident and observation directions. Here the incident and

observation directions are uniformly spaced on the unit circle/sphere. We give examples

with random noise added to the simulated data for u∞(x̂i, ŷj). The random noise level

is given by δ where the noise is added to the matrix such that

Fδ = [u∞(x̂i, ŷj) (1 + δEi,j)]
M
i,j=1 ,

with the complex-valued random matrix E satisfying ‖E‖2 = 1 . Here ‖ · ‖2 denotes the

spectral norm of a given matrix.

To evaluate our indicators we also define the vector

φz = [e−ikx̂j ·z]Mj=1 .

Therefore, we have that the DSM indicator
∣∣(Fφz, φz)L2(S)

∣∣ is computed numerically by

W̃DSM(z) =
∣∣φ∗zFδφz

∣∣
where the ∗ denotes the conjugate transpose and W̃DSM(z) denotes the approximation of

WDSM(z). For the indicator function based on the FM we need to numerically compute

the absolute value of Fδ to the half power. To do so, we let

Fδ = USV∗
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be the singular value decomposition of the matrix. Using the identity |Fδ|1/2 = (F∗δFδ)
1/4

we have that |Fδ|1/2 = VS1/2V∗. Therefore, we can numerically approximate the

indicator
(
|F |1/2φz, φz

)
L2(S) using the singular value decomposition such that

W̃FDSM(z) =
M∑
j=1

√
sj
∣∣φ∗zvj∣∣2

where (sj,vj) ∈ R>0 × CM are the singular values and right singular vectors of Fδ .

Now for the indicator based on the Tikhonov regularization we need to construct a

polynomial Pα(t) such that for all t ∈ [0, ‖Fδ‖] approximates the function Γα(t) defined

in the previous section. Due to the high condition number for polynomial interpolation

we notice that since Γα(0) = 0 we construct an approximating polynomial that has zero

as a root. This gives one coefficient less to compute. In our experiments we compute

Pα,ε(t), where

Pα,ε(t) =
3∑

k=1

ckt
k such that Pα,ε(t`) =

√
t`

α + t`

with ` = 1, . . . , 10 and t` are equally spaced point in the interval [0, ‖Fδ‖]. One normally

attempts to pick an optimal regularization parameter α via Morozov’s discrepancy

principle. Here, we only require α to be positive for Theorem 5 to hold which is all

one needs to establish the decay of the indicator function. In general, the parameter α

is taken to be small such that Γα(t) ≈ 1/
√
t holds in order to make the mapping (7) the

approximate solution of (6). To this end, we fix α = 10−2 ad hoc in our experiments

and use a spectral cut-off to compute the coefficients ck where the cut-off parameter

is fixed to be 10−8 in all the examples. Once Pα,ε(t) is computed, we can numerically

approximate the indicator
∥∥Pα,ε(|F |)φz∥∥2L2(S) such that

W̃TDSM(z) =
M∑
j=1

P 2
α,ε(sj)

∣∣φ∗zvj∣∣2
where we have again used the singular values sj and right singular vectors vj. Notice

that Pα,ε(t) need only be constructed once and is continuously used to evaluate the

indicator. Two interesting questions arise about the implementation of this method:

how to construct the polynomial Pα,ε(t) and how should one choose the regularization

parameter? These two questions are not discussed here, but could lead to an interesting

numerical and analytical investigation in the future.

Here we normalize the three indicator functions by dividing by their L∞ norms. In

our experiments we see that the functions will be approximately one near the boundary

of the scatterer and decay as the sampling point z moves away from the scatterer.

Therefore, one can choose a level curve to recover the boundary of the scatterer which

should be taken between 0.8 and 0.9 for the 2D case and between 0.6 and 0.8 for the 3D

case from our experiments. In the following subsections we see that in some cases the

indicators W̃FDSM(z) and W̃TDSM(z) seem to give a better contrast in the reconstructions

which gives a more detailed approximation of the shape of the scatterer.
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Figure 1. Plots of the pear-shaped, star-shaped, and peanut-shaped scatterers.

5.1. Numerical results in two dimensions

Here we consider reconstructing small isotropic scatterers (i.e. A = I) in R2. We have

that the scattered field is given by the solution to the Lippmann-Schwinger integral

equation (see for e.g. [11])

us(x, ŷ) =
i

4
k2
∫
D

(n(w)− 1)H
(1)
0 (k|x− w|)u(w, ŷ) dw

where H
(1)
0 is the first kind Hankel function of order zero and u is the total field for

(1)–(2). We consider the boundary of the domain ∂D = r(θ) (cos(θ), sin(θ)) where r(θ)

is given by

r(θ) =
1

5

(
2 +

3

10
cos(3θ)

)
pear-shaped domain,

r(θ) =
1

5

(
2 +

3

10
cos(5θ)

)
star-shaped domain,

r(θ) =
2

5

√
1

2
sin(θ)2 +

1

10
cos(θ)2 peanut-shaped domain.

See Figure 1 for a plot of the pear-shaped, star-shaped and peanut-shaped domain.

Since the domains under consideration are small it is well known that the Born

approximation, which is the first term in the Neumann series solution to the Lippmann-

Schwinger integral equation, approximates the scattered field. It is given by

us(x, ŷ) ≈ i

4
k2
∫
D

(n(w)− 1)H
(1)
0 (k|x− w|)eikw·ŷ dw .

This gives that the far-field pattern can be approximated by

u∞(x̂, ŷ) ≈ k2
∫
D

(n(w)− 1) eikw·(ŷ−x̂) dw

which is a good approximation for the far-field pattern since |D| � 1. To evaluate the

integral we use the built-in numerical 2D integrator ‘integral2’ in MATLAB.

In Figures 2–4 we fix the wave number k = 10 and the refractive index n = 1/2.

We add 5% random noise to the approximated far-field pattern which corresponds to
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Figure 2. Reconstructions of the pear-shaped domain using the three indicator

functions W̃DSM(z), W̃FDSM(z), and W̃TDSM(z) with noise level δ = 5%.
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Figure 3. Reconstructions of the star-shaped domain using the three indicator

functions W̃DSM(z), W̃FDSM(z), and W̃TDSM(z) with noise level δ = 5%.
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Figure 4. Reconstructions of the peanut-shaped domain using the three indicator

functions W̃DSM(z), W̃FDMS(z), and W̃TDMS(z) with noise level δ = 5%.

δ = 0.05. There are M = 32 uniformly spaced incident and observation directions given

by ŷj = x̂j = (cos(θj), sin(θj)) where θj are uniformly spaced points in [0, 2π). The

sampling region is given by [−1, 1]× [−1, 1] where the sampling points are taken to be

100× 100 equally spaced points in the sampling region. Computing the three indicator

functions takes roughly three seconds for each of the domains under consideration. In

Figures 2–4 we plot the three indicator functions studied in the previous section. We

see in Figures 2–4 that the two indicators W̃FDSM(z) and W̃TDSM(z) give comparable

results to what is given by W̃DSM(z).
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Figure 5. Reconstructions of the peanut-shaped domain using the indicator function

W̃TDSM(z) with noise level δ = 1%, 5%, and 10%.

We additionally show the robustness of the newly proposed indicator based on the

Tikhonov regularization for the peanut-shaped scatterer. We use the noise levels δ = 1%,

5%, and 10% for the far-field data and show the results for the indicator approximation

W̃TDSM(z) in Figure 5. As we can see, the reconstructions of the peanut-shaped scatterer

are robust with respect to these noise levels. Almost no difference can be seen visually.

It is well-known that the robustness is tied to the choice of the regularization parameter

which is not studied here. However, in practice one would like to pick an optimal α

depending on the noise level δ which is left for future investigation.

5.2. Numerical results in three dimensions

We now give some numerical examples in R3 for the case of A = αI where both α

and n are constants. In order to compute the far-field pattern we use boundary integral

equations derived from Green’s representation formula for the scattered field us in R3\D
and the total field u in D (see [1] for details). This gives a 2×2 system of boundary

integral equations on the boundary ∂D for the densities ϕ1 and ϕ2. We employ a

boundary element collocation method to solve the system numerically. Here, the far-field

operator is approximated for simplicity by constant interpolation over a triangulation

of the unit sphere. For a possible higher-order approximation of it, we refer the reader

to [19].

In our numerical examples the computed densities ϕ1 and ϕ2 depend on the incident

direction ŷ since each incident direction corresponds to a new right-hand side for the

boundary integral equations. The corresponding far-field pattern u∞ can be derived

from Green’s representation and is given by

u∞(x̂, ŷ) =
1

4π

∫
∂D

ϕ1(w, ŷ)∂ν(w)e
−ikw·x̂ − ϕ2(w, ŷ)e−ikw·x̂ ds(w) .

The boundary of the domain is given in spherical coordinates such that

∂D = r(φ) (sin(φ) cos(θ), sin(φ) sin(θ), cos(φ))

where r(φ) is given by r(φ) = 1,

r(φ) =
3

2

√
cos2(φ) +

1

4
sin2(φ) , and r(φ) =

3

5

√
17

4
+ 2 cos(3φ)
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Figure 6. Triangularization of the sphere, peanut-shaped, and acorn-shaped domains

with 512 faces.
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Figure 7. Reconstructions of the spherical domain using the three indicator functions

W̃DSM(z), W̃FDSM(z), and W̃TDSM(z) with noise level δ = 5%.

which represent a sphere, peanut-shaped, and acorn-shaped domain, respectively. See

Figure 6 for a triangularization of their surfaces. Note that some of the far-field data

have already been used in [3, Section 8].

In Figures 7–9 we fix the wave number k = 2 with n = 1/2 and A = 2I in

our examples. We add 5% random noise to the approximated far-field pattern which

corresponds to δ = 0.05. Here, we use M = 258 incidence and observation directions

that are ‘almost’ uniformly spaced on the unit sphere (see [17, Appendix A.1] for details).

We plot the three indicators on the y−z plane such that the sampling region is given by

[−2, 2]×[−2, 2] where the sampling points are taken to be 100×100 equally spaced points

in the sampling region. Computing the three indicator functions takes roughly five to

six seconds for each of the domains under consideration. In Figures 7–9 we contour plots

of the three indicator functions for spherical, peanut-shaped, and acorn-shaped domain.

Again we see that the three indicators give comparable reconstructions for the sphere

and peanut-shaped obstacle. In Figure 9 we see that the indicator W̃TDSM(z) gives a

more detailed reconstruction of the acorn-shaped scatterer.

Finally, we show the reconstructions for the peanut-shaped domain by the newly

proposed indicator based on the Tikhonov regularization using the noise levels δ = 1%,

5%, and 10% for the far-field data. The results for the indicator approximation

W̃TDSM(z) are given in Figure 10. Here, we can see that we obtain the best reconstruction

for the noise level 1%. The reconstruction deteriorates significantly as the noise level
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Figure 8. Reconstructions of the peanut-shaped domain using the three indicator

functions W̃DSM(z), W̃FDSM(z), and W̃TDSM(z) with noise level δ = 5%.
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Figure 9. Reconstructions of the acorn-shaped domain using the three indicator

functions W̃DSM(z), W̃FDSM(z), and W̃TDSM(z) with noise level δ = 5%.
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Figure 10. Reconstructions of the peanut-shaped domain using the indicator function

W̃TDSM(z) with noise level δ = 1%, 5%, and 10%.

increases.

6. Summary and outlook

In this article, we have studied three DSM indicator functions using the theoretical

basis of the FM for anisotropic materials with real-valued coefficients. The equivalence

of two indicators previously studied is shown as well as a new indicator based on the

Tikhonov regularization applied to the far-field equation for the factorization method is

proposed. Precisely, we are able to prove that one of the indicator functions decays as the
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sampling point moves away from the scatterer. Note that the results here are stated for

anisotropic materials but the analysis is valid whenever the scattering operator is unitary

and the far-field operator is injective with dense range which means that these results

hold for a wide range of scattering objects. Numerical examples show the validity of the

three indicator functions. In our experiments we are able to reconstruct the scatterers in

seconds which gives that these DSMs are computationally cheap and rigorously justified.

The analysis in this article depends mainly on the orthonormal spectral decomposition of

the far-field operator. It is known that for the case of complex-valued coefficients the far-

field operator fails to be normal and therefore does not have the orthonormal spectral

decomposition which is vital in our approach. However, one can still apply the FM

either to the operators Im(F ) or F] = |Re(F )|+ |Im(F )| (see for e.g. [8, 17, 16, 20]). By

definition one has that these operators are self-adjoint and compact which implies they

have an orthonormal spectral decomposition. One can then construct DSM indicator

functions using either Im(F ) or F] also for the case of scatterers with complex-valued

coefficients.
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