000861052 001__ 861052
000861052 005__ 20210130000708.0
000861052 0247_ $$2doi$$a10.1063/1.5001158
000861052 0247_ $$2ISSN$$a0021-8979
000861052 0247_ $$2ISSN$$a0148-6349
000861052 0247_ $$2ISSN$$a1089-7550
000861052 0247_ $$2ISSN$$a1520-8850
000861052 0247_ $$2ISSN$$a2163-5102
000861052 0247_ $$2Handle$$a2128/21715
000861052 0247_ $$2WOS$$aWOS:000423028400040
000861052 0247_ $$2altmetric$$aaltmetric:32126682
000861052 037__ $$aFZJ-2019-01636
000861052 082__ $$a530
000861052 1001_ $$00000-0001-6405-1999$$aBashir, A.$$b0
000861052 245__ $$aInterfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structure
000861052 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2018
000861052 3367_ $$2DRIVER$$aarticle
000861052 3367_ $$2DataCite$$aOutput Types/Journal article
000861052 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550827233_27458
000861052 3367_ $$2BibTeX$$aARTICLE
000861052 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861052 3367_ $$00$$2EndNote$$aJournal Article
000861052 520__ $$aA Ge-SiGe multiple quantum well structure created by low energy plasma enhanced chemical vapour deposition, with nominal well thickness of 5.4 nm separated by 3.6 nm SiGe spacers, is analysed quantitatively using scanning transmission electron microscopy. Both high angle annular dark field imaging and electron energy loss spectroscopy show that the interfaces are not completely sharp, suggesting that there is some intermixing of Si and Ge at each interface. Two methods are compared for the quantification of the spectroscopy datasets: a self-consistent approach that calculates binary substitutional trends without requiring experimental or computational k-factors from elsewhere and a standards-based cross sectional calculation. Whilst the cross section approach is shown to be ultimately more reliable, the self-consistent approach provides surprisingly good results. It is found that the Ge quantum wells are actually about 95% Ge and that the spacers, whilst apparently peaking at about 35% Si, contain significant interdiffused Ge at each side. This result is shown to be not just an artefact of electron beam spreading in the sample, but mostly arising from a real chemical interdiffusion resulting from the growth. Similar results are found by use of X-ray diffraction from a similar area of the sample. Putting the results together suggests a real interdiffusion with a standard deviation of about 0.87 nm, or put another way—a true width defined from 10%–90% of the compositional gradient of about 2.9 nm. This suggests an intrinsic limit on how sharp such interfaces can be grown by this method and, whilst 95% Ge quantum wells (QWs) still behave well enough to have good properties, any attempt to grow thinner QWs would require modifications to the growth procedure to reduce this interdiffusion, in order to maintain a composition of ≥95% Ge
000861052 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000861052 588__ $$aDataset connected to CrossRef
000861052 7001_ $$00000-0002-4733-3940$$aGallacher, K.$$b1
000861052 7001_ $$0P:(DE-HGF)0$$aMillar, R. W.$$b2
000861052 7001_ $$00000-0001-7402-8530$$aPaul, D. J.$$b3
000861052 7001_ $$00000-0002-2957-8717$$aBallabio, A.$$b4
000861052 7001_ $$0P:(DE-HGF)0$$aFrigerio, J.$$b5
000861052 7001_ $$00000-0001-5951-7440$$aIsella, G.$$b6
000861052 7001_ $$00000-0001-6961-6581$$aKriegner, D.$$b7
000861052 7001_ $$00000-0002-7203-5355$$aOrtolani, M.$$b8
000861052 7001_ $$0P:(DE-Juel1)130525$$aBarthel, J.$$b9$$ufzj
000861052 7001_ $$00000-0002-5334-3010$$aMacLaren, I.$$b10
000861052 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.5001158$$gVol. 123, no. 3, p. 035703 -$$n3$$p035703 -$$tJournal of applied physics$$v123$$x1089-7550$$y2018
000861052 8564_ $$uhttps://juser.fz-juelich.de/record/861052/files/1.5001158.pdf$$yPublished on 2018-01-19. Available in OpenAccess from 2019-01-19.
000861052 8564_ $$uhttps://juser.fz-juelich.de/record/861052/files/1.5001158.pdf?subformat=pdfa$$xpdfa$$yPublished on 2018-01-19. Available in OpenAccess from 2019-01-19.
000861052 909CO $$ooai:juser.fz-juelich.de:861052$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861052 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b9$$kFZJ
000861052 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000861052 9141_ $$y2019
000861052 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861052 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861052 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000861052 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL PHYS : 2017
000861052 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861052 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861052 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861052 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861052 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861052 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861052 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000861052 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861052 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000861052 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861052 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861052 920__ $$lyes
000861052 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000861052 980__ $$ajournal
000861052 980__ $$aVDB
000861052 980__ $$aUNRESTRICTED
000861052 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000861052 9801_ $$aFullTexts