001     861052
005     20210130000708.0
024 7 _ |a 10.1063/1.5001158
|2 doi
024 7 _ |a 0021-8979
|2 ISSN
024 7 _ |a 0148-6349
|2 ISSN
024 7 _ |a 1089-7550
|2 ISSN
024 7 _ |a 1520-8850
|2 ISSN
024 7 _ |a 2163-5102
|2 ISSN
024 7 _ |a 2128/21715
|2 Handle
024 7 _ |a WOS:000423028400040
|2 WOS
024 7 _ |a altmetric:32126682
|2 altmetric
037 _ _ |a FZJ-2019-01636
082 _ _ |a 530
100 1 _ |a Bashir, A.
|0 0000-0001-6405-1999
|b 0
245 _ _ |a Interfacial sharpness and intermixing in a Ge-SiGe multiple quantum well structure
260 _ _ |a Melville, NY
|c 2018
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550827233_27458
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A Ge-SiGe multiple quantum well structure created by low energy plasma enhanced chemical vapour deposition, with nominal well thickness of 5.4 nm separated by 3.6 nm SiGe spacers, is analysed quantitatively using scanning transmission electron microscopy. Both high angle annular dark field imaging and electron energy loss spectroscopy show that the interfaces are not completely sharp, suggesting that there is some intermixing of Si and Ge at each interface. Two methods are compared for the quantification of the spectroscopy datasets: a self-consistent approach that calculates binary substitutional trends without requiring experimental or computational k-factors from elsewhere and a standards-based cross sectional calculation. Whilst the cross section approach is shown to be ultimately more reliable, the self-consistent approach provides surprisingly good results. It is found that the Ge quantum wells are actually about 95% Ge and that the spacers, whilst apparently peaking at about 35% Si, contain significant interdiffused Ge at each side. This result is shown to be not just an artefact of electron beam spreading in the sample, but mostly arising from a real chemical interdiffusion resulting from the growth. Similar results are found by use of X-ray diffraction from a similar area of the sample. Putting the results together suggests a real interdiffusion with a standard deviation of about 0.87 nm, or put another way—a true width defined from 10%–90% of the compositional gradient of about 2.9 nm. This suggests an intrinsic limit on how sharp such interfaces can be grown by this method and, whilst 95% Ge quantum wells (QWs) still behave well enough to have good properties, any attempt to grow thinner QWs would require modifications to the growth procedure to reduce this interdiffusion, in order to maintain a composition of ≥95% Ge
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gallacher, K.
|0 0000-0002-4733-3940
|b 1
700 1 _ |a Millar, R. W.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Paul, D. J.
|0 0000-0001-7402-8530
|b 3
700 1 _ |a Ballabio, A.
|0 0000-0002-2957-8717
|b 4
700 1 _ |a Frigerio, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Isella, G.
|0 0000-0001-5951-7440
|b 6
700 1 _ |a Kriegner, D.
|0 0000-0001-6961-6581
|b 7
700 1 _ |a Ortolani, M.
|0 0000-0002-7203-5355
|b 8
700 1 _ |a Barthel, J.
|0 P:(DE-Juel1)130525
|b 9
|u fzj
700 1 _ |a MacLaren, I.
|0 0000-0002-5334-3010
|b 10
773 _ _ |a 10.1063/1.5001158
|g Vol. 123, no. 3, p. 035703 -
|0 PERI:(DE-600)1476463-5
|n 3
|p 035703 -
|t Journal of applied physics
|v 123
|y 2018
|x 1089-7550
856 4 _ |y Published on 2018-01-19. Available in OpenAccess from 2019-01-19.
|u https://juser.fz-juelich.de/record/861052/files/1.5001158.pdf
856 4 _ |y Published on 2018-01-19. Available in OpenAccess from 2019-01-19.
|x pdfa
|u https://juser.fz-juelich.de/record/861052/files/1.5001158.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:861052
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130525
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21