000861055 001__ 861055
000861055 005__ 20210130000709.0
000861055 0247_ $$2doi$$a10.1016/j.memsci.2018.02.034
000861055 0247_ $$2ISSN$$a0376-7388
000861055 0247_ $$2ISSN$$a1873-3123
000861055 0247_ $$2WOS$$aWOS:000429188200040
000861055 037__ $$aFZJ-2019-01639
000861055 082__ $$a570
000861055 1001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b0$$eCorresponding author
000861055 245__ $$aNew types of graphene-based membranes with molecular sieve properties for He, H2 and H2O
000861055 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000861055 3367_ $$2DRIVER$$aarticle
000861055 3367_ $$2DataCite$$aOutput Types/Journal article
000861055 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1550828370_25402
000861055 3367_ $$2BibTeX$$aARTICLE
000861055 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861055 3367_ $$00$$2EndNote$$aJournal Article
000861055 520__ $$aGraphene oxide (GO) and graphene membranes were fabricated by dip-coating a GO dispersion on a specially designed 8YSZ mesoporous membrane. With the use of a reductive thermal treatment at 750 °C, it was possible to obtain a graphene membrane with permselectivities of 215, 80 and 170, for the gas pairs He/N2, H2/CO2 and H2/N2, respectively, and the H2 permeance reached ∼ 7·10−8 mol m−2 s−1 Pa−1. High H2O permeance and selectivity was achieved by processing a GO membrane in air at 300 °C. In pervaporation with H2O/IPA mixtures (5% H2O), the resulting membrane selectively separated H2O (separation factor > 800) and a flux of 4–8 kg m−2 h−1 was achieved at 70 °C.
000861055 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000861055 588__ $$aDataset connected to CrossRef
000861055 7001_ $$0P:(DE-Juel1)130525$$aBarthel, Juri$$b1
000861055 773__ $$0PERI:(DE-600)1491419-0$$a10.1016/j.memsci.2018.02.034$$gVol. 554, p. 378 - 384$$p378 - 384$$tJournal of membrane science$$v554$$x0376-7388$$y2018
000861055 8564_ $$uhttps://juser.fz-juelich.de/record/861055/files/1-s2.0-S0376738817335603-main.pdf$$yRestricted
000861055 8564_ $$uhttps://juser.fz-juelich.de/record/861055/files/1-s2.0-S0376738817335603-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861055 909CO $$ooai:juser.fz-juelich.de:861055$$pVDB
000861055 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich$$b0$$kFZJ
000861055 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130525$$aForschungszentrum Jülich$$b1$$kFZJ
000861055 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000861055 9141_ $$y2019
000861055 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MEMBRANE SCI : 2017
000861055 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861055 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861055 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861055 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861055 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861055 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861055 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861055 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861055 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861055 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000861055 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MEMBRANE SCI : 2017
000861055 920__ $$lyes
000861055 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x0
000861055 980__ $$ajournal
000861055 980__ $$aVDB
000861055 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000861055 980__ $$aUNRESTRICTED