000861059 001__ 861059
000861059 005__ 20240711101522.0
000861059 0247_ $$2doi$$a10.1038/s41598-019-38888-x
000861059 0247_ $$2Handle$$a2128/21719
000861059 0247_ $$2pmid$$apmid:30792428
000861059 0247_ $$2WOS$$aWOS:000459281500045
000861059 0247_ $$2altmetric$$aaltmetric:55839495
000861059 037__ $$aFZJ-2019-01643
000861059 041__ $$aEnglish
000861059 082__ $$a600
000861059 1001_ $$0P:(DE-Juel1)168208$$aLeis, Arthur$$b0
000861059 245__ $$aIn-situ four-tip STM investigation of the transition from 2D to 3D charge transport in SrTiO3
000861059 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000861059 3367_ $$2DRIVER$$aarticle
000861059 3367_ $$2DataCite$$aOutput Types/Journal article
000861059 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1554462841_6713
000861059 3367_ $$2BibTeX$$aARTICLE
000861059 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861059 3367_ $$00$$2EndNote$$aJournal Article
000861059 520__ $$aThe electrical properties of SrTiO3(100) single crystals were investigated in-situ at different stages of thermal reduction by means of a 4-tip STM. Using the tips of the STM as electrical probes, distance-dependent four-point measurements were performed at the surface of the crystal at room temperature after reduction by thermal treatment. For annealing temperatures T ≤ 700 °C, charge transport is confined to a surface region <3 μm below the surface. For reduction at T ≥ 900 °C a transition from a conducting 2D sheet with insulating bulk to a system with dominant 3D bulk conductivity is found. At an intermediate reduction temperature of T = 800 °C, a regime with mixed 2D/3D contributions is observed in the distance-dependent resistance measurements. Describing the depth-dependent conductivity with an analytical N-layer model, this regime of mixed 2D/3D conductivity is evaluated quantitatively under the assumption of an exponentially decaying conductivity profile, correlated with the previously observed depth-dependent dislocation density in the sample. A non-monotonous temperature dependence of the 3D conductivity in the respective conducting layer is found and possible underlying mechanisms are discussed, particularly with regard to non-intrinsic material properties depending on details of the sample preparation.
000861059 536__ $$0G:(DE-HGF)POF3-141$$a141 - Controlling Electron Charge-Based Phenomena (POF3-141)$$cPOF3-141$$fPOF III$$x0
000861059 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x1
000861059 588__ $$aDataset connected to CrossRef
000861059 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b1
000861059 7001_ $$0P:(DE-HGF)0$$aSzot, Krzysztof$$b2
000861059 7001_ $$0P:(DE-Juel1)128762$$aCherepanov, Vasily$$b3
000861059 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. Stefan$$b4
000861059 7001_ $$0P:(DE-Juel1)128794$$aVoigtländer, Bert$$b5$$eCorresponding author
000861059 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-38888-x$$gVol. 9, no. 1, p. 2476$$n1$$p2476$$tScientific reports$$v9$$x2045-2322$$y2019
000861059 8564_ $$uhttps://juser.fz-juelich.de/record/861059/files/s41598-019-38888-x.pdf$$yOpenAccess
000861059 8564_ $$uhttps://juser.fz-juelich.de/record/861059/files/s41598-019-38888-x.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861059 8767_ $$92019-01-14$$d2019-01-14$$eAPC$$jZahlung erfolgt$$lKK: Barbers$$pSREP-18-33668B$$zFZJ-2018-05425
000861059 909CO $$ooai:juser.fz-juelich.de:861059$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000861059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168208$$aForschungszentrum Jülich$$b0$$kFZJ
000861059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b1$$kFZJ
000861059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b2$$kFZJ
000861059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128762$$aForschungszentrum Jülich$$b3$$kFZJ
000861059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b4$$kFZJ
000861059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128794$$aForschungszentrum Jülich$$b5$$kFZJ
000861059 9131_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000861059 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x1
000861059 9141_ $$y2019
000861059 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861059 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861059 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000861059 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861059 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000861059 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000861059 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000861059 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000861059 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861059 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861059 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861059 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861059 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861059 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861059 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861059 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861059 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861059 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000861059 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861059 920__ $$lyes
000861059 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000861059 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x1
000861059 9801_ $$aAPC
000861059 9801_ $$aFullTexts
000861059 980__ $$ajournal
000861059 980__ $$aVDB
000861059 980__ $$aI:(DE-Juel1)PGI-3-20110106
000861059 980__ $$aI:(DE-Juel1)IEK-3-20101013
000861059 980__ $$aAPC
000861059 980__ $$aUNRESTRICTED
000861059 981__ $$aI:(DE-Juel1)ICE-2-20101013