000861089 001__ 861089
000861089 005__ 20210130000713.0
000861089 0247_ $$2doi$$a10.1016/j.jneumeth.2019.02.009
000861089 0247_ $$2ISSN$$a0165-0270
000861089 0247_ $$2ISSN$$a1872-678X
000861089 0247_ $$2Handle$$a2128/21760
000861089 0247_ $$2pmid$$apmid:30786248
000861089 0247_ $$2WOS$$aWOS:000461264000011
000861089 037__ $$aFZJ-2019-01654
000861089 082__ $$a610
000861089 1001_ $$0P:(DE-Juel1)167150$$aYeldesbay, Azamat$$b0$$eCorresponding author$$ufzj
000861089 245__ $$aReconstruction of effective connectivity in the case of asymmetric phase distributions
000861089 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000861089 3367_ $$2DRIVER$$aarticle
000861089 3367_ $$2DataCite$$aOutput Types/Journal article
000861089 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1551105413_11999
000861089 3367_ $$2BibTeX$$aARTICLE
000861089 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861089 3367_ $$00$$2EndNote$$aJournal Article
000861089 520__ $$aBackgroundThe interaction of different brain regions is supported by transient synchronization between neural oscillations at different frequencies. Different measures based on synchronization theory are used to assess the strength of the interactions from experimental data. One method of estimating the effective connectivity between brain regions, within the framework of the theory of weakly coupled phase oscillators, was implemented in Dynamic Causal Modelling (DCM) for phase coupling (Penny et al., 2009). However, the results of such an approach strongly depend on the observables used to reconstruct the equations (Kralemann et al., 2008). In particular, an asymmetric distribution of the observables could result in a false estimation of the effective connectivity between the network nodes.New methodIn this work we built a new modelling part into DCM for phase coupling, and extended it with a distortion function that accommodates departures from purely sinusoidal oscillations.ResultsBy analysing numerically generated data sets with an asymmetric phase distribution, we demonstrated that the extended DCM for phase coupling with the additional modelling component, correctly estimates the coupling functions.Comparison with existing methodsThe new method allows for different intrinsic frequencies among coupled neuronal populations and provides results that do not depend on the distribution of the observables.ConclusionsThe proposed method can be used to analyse effective connectivity between brain regions within and between different frequency bands, to characterize m:n phase coupling, and to unravel underlying mechanisms of the transient synchronization.
000861089 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000861089 588__ $$aDataset connected to CrossRef
000861089 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b1$$ufzj
000861089 7001_ $$0P:(DE-Juel1)162297$$aDaun, Silvia$$b2$$ufzj
000861089 773__ $$0PERI:(DE-600)1500499-5$$a10.1016/j.jneumeth.2019.02.009$$gVol. 317, p. 94 - 107$$p94 - 107$$tJournal of neuroscience methods$$v317$$x0165-0270$$y2019
000861089 8564_ $$uhttps://juser.fz-juelich.de/record/861089/files/Yeldesbay_JNeuroMeth_Reconstruction%20of%20effective%20connectivity%20in%20the%20case%20of%20asymmetric%20phase%20distributions.pdf$$yOpenAccess
000861089 8564_ $$uhttps://juser.fz-juelich.de/record/861089/files/Yeldesbay_JNeuroMeth_Reconstruction%20of%20effective%20connectivity%20in%20the%20case%20of%20asymmetric%20phase%20distributions.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861089 909CO $$ooai:juser.fz-juelich.de:861089$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167150$$aForschungszentrum Jülich$$b0$$kFZJ
000861089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b1$$kFZJ
000861089 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162297$$aForschungszentrum Jülich$$b2$$kFZJ
000861089 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000861089 9141_ $$y2019
000861089 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861089 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000861089 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861089 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROSCI METH : 2017
000861089 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861089 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861089 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861089 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861089 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861089 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861089 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861089 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861089 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861089 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861089 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861089 920__ $$lyes
000861089 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000861089 980__ $$ajournal
000861089 980__ $$aVDB
000861089 980__ $$aUNRESTRICTED
000861089 980__ $$aI:(DE-Juel1)INM-3-20090406
000861089 9801_ $$aFullTexts