001     861092
005     20220930130207.0
024 7 _ |a 10.1093/chemse/bjz013
|2 doi
024 7 _ |a 0379-864X
|2 ISSN
024 7 _ |a 1464-3553
|2 ISSN
024 7 _ |a 2128/22094
|2 Handle
024 7 _ |a altmetric:56027896
|2 altmetric
024 7 _ |a pmid:30788507
|2 pmid
024 7 _ |a WOS:000483149200001
|2 WOS
037 _ _ |a FZJ-2019-01657
082 _ _ |a 540
100 1 _ |a Ohla, Kathrin
|0 P:(DE-Juel1)165362
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Recognizing taste: coding patterns along the neural axis in mammals
260 _ _ |a Oxford
|c 2019
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1556005547_23668
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The gustatory system encodes information about chemical identity, nutritional value, and concentration of sensory stimuli before transmitting the signal from taste buds to central neurons that process and transform the signal. Deciphering the coding logic for taste quality requires examining responses at each level along the neural axis—from peripheral sensory organs to gustatory cortex. From the earliest single-fiber recordings, it was clear that some afferent neurons respond uniquely and others to stimuli of multiple qualities. There is frequently a “best stimulus” for a given neuron, leading to the suggestion that taste exhibits “labeled line coding.” In the extreme, a strict “labeled line” requires neurons and pathways dedicated to single qualities (e.g., sweet, bitter, etc.). At the other end of the spectrum, “across-fiber,” “combinatorial,” or “ensemble” coding requires minimal specific information to be imparted by a single neuron. Instead, taste quality information is encoded by simultaneous activity in ensembles of afferent fibers. Further, “temporal coding” models have proposed that certain features of taste quality may be embedded in the cadence of impulse activity. Taste receptor proteins are often expressed in nonoverlapping sets of cells in taste buds apparently supporting “labeled lines.” Yet, taste buds include both narrowly and broadly tuned cells. As gustatory signals proceed to the hindbrain and on to higher centers, coding becomes more distributed and temporal patterns of activity become important. Here, we present the conundrum of taste coding in the light of current electrophysiological and imaging techniques at several levels of the gustatory processing pathway.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yoshida, Ryusuke
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Roper, Stephen D
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Di Lorenzo, Patricia M
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Victor, Jonathan D
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Boughter, John D
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fletcher, Max
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Katz, Donald B
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Chaudhari, Nirupa
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1093/chemse/bjz013
|0 PERI:(DE-600)1494617-8
|n 4
|p 237–247
|t Chemical senses
|v 44
|y 2019
|x 1464-3553
856 4 _ |u https://juser.fz-juelich.de/record/861092/files/000082455222_20190312161308%20%28002%29.pdf
856 4 _ |y Published on 2019-02-20. Available in OpenAccess from 2020-02-20.
|u https://juser.fz-juelich.de/record/861092/files/Ohla_2019_Post%20Print_Chemical%20Senses_Recognizing%20taste-coding%20patterns%20along%20the%20neural%20axis%20in%20mammals.pdf
856 4 _ |u https://juser.fz-juelich.de/record/861092/files/bjz013.pdf
|y Restricted
856 4 _ |y Published on 2019-02-20. Available in OpenAccess from 2020-02-20.
|x pdfa
|u https://juser.fz-juelich.de/record/861092/files/Ohla_2019_Post%20Print_Chemical%20Senses_Recognizing%20taste-coding%20patterns%20along%20the%20neural%20axis%20in%20mammals.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/861092/files/bjz013.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:861092
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165362
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEM SENSES : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21