000861135 001__ 861135
000861135 005__ 20240709094311.0
000861135 0247_ $$2doi$$a10.1016/j.calphad.2019.02.006
000861135 0247_ $$2ISSN$$a0364-5916
000861135 0247_ $$2ISSN$$a1873-2984
000861135 0247_ $$2WOS$$aWOS:000470946700015
000861135 037__ $$aFZJ-2019-01692
000861135 082__ $$a540
000861135 1001_ $$0P:(DE-Juel1)176333$$aBencze, Laszlo$$b0
000861135 245__ $$aExperimental Thermodynamic Investigation of the Liquid Cu-Li-Sn System by Knudsen Effusion Mass Spectrometry 2
000861135 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000861135 3367_ $$2DRIVER$$aarticle
000861135 3367_ $$2DataCite$$aOutput Types/Journal article
000861135 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1551193047_13895
000861135 3367_ $$2BibTeX$$aARTICLE
000861135 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861135 3367_ $$00$$2EndNote$$aJournal Article
000861135 520__ $$aThe thermodynamic activity of lithium was measured by Knudsen Effusion Mass Spectrometry (KEMS) within the Cu-Li-Sn system in the liquid region. For this purpose, eleven samples were studied between 773 and 1078 K in the Sn-rich part of the Cu-Li-Sn phase diagram. Mixing enthalpies, entropies and Gibbs energies were derived directly from the measured thermodynamic activity. The measured thermodynamic activities of Li were fitted to the Redlich-Kister-Muggianu (RKM) sub-regular solution model, by taking ternary interactions into account, using a mathematical regression procedure. Thereby, the partial and integral excess thermodynamic properties, the activities of Li, Cu and Sn and the ternary interaction L-parameters, as a function of temperature, were obtained.
000861135 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000861135 588__ $$aDataset connected to CrossRef
000861135 7001_ $$0P:(DE-Juel1)129722$$aHenriques, D.$$b1
000861135 7001_ $$0P:(DE-Juel1)129761$$aMotalov, V.$$b2$$eCorresponding author
000861135 7001_ $$0P:(DE-HGF)0$$aKovács, Á. Kolay$$b3
000861135 7001_ $$0P:(DE-Juel1)129756$$aMarkus, T.$$b4
000861135 773__ $$0PERI:(DE-600)1501512-9$$a10.1016/j.calphad.2019.02.006$$gVol. 65, p. 132 - 140$$p132 - 140$$tCalphad$$v65$$x0364-5916$$y2019
000861135 909CO $$ooai:juser.fz-juelich.de:861135$$pVDB
000861135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176333$$aForschungszentrum Jülich$$b0$$kFZJ
000861135 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129761$$aForschungszentrum Jülich$$b2$$kFZJ
000861135 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000861135 9141_ $$y2019
000861135 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861135 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCALPHAD : 2017
000861135 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861135 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861135 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861135 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861135 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861135 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861135 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861135 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861135 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000861135 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861135 920__ $$lno
000861135 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000861135 980__ $$ajournal
000861135 980__ $$aVDB
000861135 980__ $$aI:(DE-Juel1)IEK-2-20101013
000861135 980__ $$aUNRESTRICTED
000861135 981__ $$aI:(DE-Juel1)IMD-1-20101013