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Part I: Introduction & motivation

Member of the Helmholtz Association SIAM CSE 2019 (MS 62) | February 25, 2019 Andreas Kleefeld



INTRODUCTION & MOTIVATION
General idea

Time-dependent partial differential equations (PDEs) arise naturally in image

processing.

For example: convolution of image with Gaussian kernel which is equivalent

to solving a linear diffusion equation.

Other PDEs: dilation/erosion (evolution equations).

Can serve as building blocks for higher morphological operations (opening,

closing, gradients) or deblurring filters.
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INTRODUCTION & MOTIVATION
What is new?

Different type of generalization of an evolution equation.

Temporal derivative of fractional order α: ∂α

∂tα
with α ∈ (0, 2).

Definition of the fractional derivative as an extension of integration

concatenated with regular differentiation (Caputo).

Global information are considered.

Also interesting for other applications.

Up to now this approach was only considered for specific fractional orders as

α = 1/2 and not for morphological operations.
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Part II: Anomalous diffusion
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ANOMALOUS DIFFUSION
Mathematical model

Diffusion equation:
c∂α

∂tα
u = div(κ grad u) ,

where κ is a constant.

Caputo fractional derivative:

c∂α

∂tα
u =

1

Γ(m + 1 − α)

∫ t

0

u(m+1)(τ)

(t − τ)α−m
dτ ,

where m = ⌊α⌋ and 0 < α < 1 or 1 < α < 2 .

Initial condition(s): given gray-value image and in case of super-diffusion we

need a second initial condition.

Boundary condition: homogeneous Neumann.
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ANOMALOUS DIFFUSION
Space discretization

2D-grid with h = 1 and M × N grid points.

Approximation of Laplace operator with centered differences for interior

nodes: κ(ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j) .

Homogeneous Neumann boundaries for exterior nodes.
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ANOMALOUS DIFFUSION
Time discretization

Grid of the form tk = k∆t , k = 0, . . . ,P with grid size ∆t = T/P .

Approximation of Caputo derivative by Grünwald-Letnikov formula:

C∂αu

∂tα

∣

∣

∣

∣

t=tk+1

x=(xi ,yj )

≈
k+1
∑

ℓ=0

c
(α)
ℓ uk+1−ℓ

i,j −
m
∑

n=0

(tk+1)
n−α

Γ(n − α + 1)
u(m)(xi , yj) ,

where

c
(α)
0 = (∆t)−α , c

(α)
k =

(

1 −
1 + α

k

)

c
(α)
k−1 .
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ANOMALOUS DIFFUSION
Numerical schemes

Explicit:

k+1
∑

ℓ=0

c
(α)
ℓ uk+1−ℓ

i,j −

m
∑

n=0

(tk+1)
n−α

Γ(n − α + 1)
u(m)(xi , yj)

=κ
(

uk
i+1,j + uk

i−1,j + uk
i,j+1 + uk

i,j−1 − 4uk
i,j

)

.

Implicit:

k+1
∑

ℓ=0

c
(α)
ℓ uk+1−ℓ

i,j −

m
∑

n=0

(tk+1)
n−α

Γ(n − α + 1)
u(m)(xi , yj)

=κ
(

uk+1
i+1,j + uk+1

i−1,j + uk+1
i,j+1 + uk+1

i,j−1 − 4uk+1
i,j

)

.
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ANOMALOUS DIFFUSION
Numerical schemes

Explicit:

uk+1 = A uk − bex with A = αIMN + (∆t)ακ · D2 .

Implicit:

B uk+1 = bim with B = −(∆t)−αIMN + κ · D2 .

D2 is the 2D-Laplacian and bex and bim are given by

bex = (∆t)α

(

k+1
∑

ℓ=2

c
(α)
ℓ

uk+1−ℓ −

m
∑

n=0

(tk+1)
n−α

Γ(n − α+ 1)
u(m)(xi , yj)

)

,

bim = −α(∆t)−αuk +

(

k+1
∑

ℓ=2

c
(α)
ℓ

uk+1−ℓ −

m
∑

n=0

(tk+1)
n−α

Γ(n − α+ 1)
u(m)(xi , yj)

)

.
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Part III: Modified dilation & erosion
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MODIFIED DILATION & EROSION
Mathematical model & discretization

Dilation & erosion equation:

c∂α

∂tα
u = ±

√

(

∂u

∂x

)2

+

(

∂u

∂y

)2

.

Approximation of Caputo fractional derivative as before.

Approximation in space by first-order finite difference scheme of Rouy-Tourin:

[

max(−ui,j + ui−1,j , ui+1,j − ui,j , 0)
2 +max(−ui,j + ui,j−1, ui,j+1 − ui,j , 0)

2
]1/2

.
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MODIFIED DILATION & EROSION
Numerical schemes

As before, we obtain an iterative scheme of the form

uk+1 = αuk + (∆t)αbdt ± (∆t)α
√

b2
dx + b2

dy ,

where

bdt = −
k+1
∑

l=2

c
(α)
l uk+1−l +

t−α
k+1

Γ(1 − α)
u0

and the i-th, j-th entry of bdx is given by

max
(

−uk
i,j + uk

i−1,j , u
k
i+1,j − uk

i,j , 0
)

and bdy analogously.
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Part IV: Numerical results
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NUMERICAL RESULTS
Stability

Linear test problem:

c∂αu(t)

∂tα
= λu(t) , λ ∈ C ,

u(0) = u0 for 0 < α ≤ 1 ,

and additionally u′(0) = u1 for 1 < α < 2 .

Explicit method: C\{(1 − z)α/z : |z| ≤ 1} .

Implicit method: C\{(1 − z)α : |z| ≤ 1} .
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NUMERICAL RESULTS
Stability
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Figure: Stability regions for explicit Euler method using parameters α = 0.4, α = 0.6, and

α = 0.8 (first row) and α = 1.0, α = 1.2, and α = 1.4 (second row).
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NUMERICAL RESULTS
Stability
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Figure: Stability regions for implicit Euler method using parameters α = 0.4, α = 0.6, and

α = 0.8 (first row) and α = 1.0, α = 1.2, and α = 1.4 (second row).
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NUMERICAL RESULTS
Stability

Interval of stability is (−2α, 0) .

Implicit Euler method is A-stable for 0 < α ≤ 1 whereas we loose this

property for 1 < α < 2 .

Could investigate A(θ) stability, where θ ≤ π/2 will depend on α.

We obtain the θ angles (in degrees ◦) 90, 81, 72, 63, 54, 45, 36, 27, 18, and 9

for the parameters α = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9,

respectively.

Hence, it appears to be that θ is given by (2 − α)· 90◦ for 1 ≤ α < 2 (the proof

remains open).
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NUMERICAL RESULTS
Convergence

Homogeneous initial conditions: convergence order 1

Non-homogenous initial conditions: convergence order depends on α

Calculation of error:
c∂αu(t)

∂tα
= t2 , u(0) = 0 , 0 ≤ t ≤ 1 , 1 < α ≤ 2

with exact solution

u(t) =
Γ(3 + α)

Γ(3)
t2+α .

Estimated convergence order (EOC):

EOC =
log(E∆t/E∆t/2)

log(2)
, where E∆t = |u(1)− ũ∆t(1)| .
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NUMERICAL RESULTS
Convergence

α = 0.4 α = 0.8 α = 1.0 α = 1.2
∆t E∆t EOC E∆t EOC E∆t EOC E∆t EOC

1/10 0.1220 0.0685 0.0483 0.0324

1/20 0.0627 0.96 0.0350 0.97 0.0246 0.98 0.0164 0.99

1/40 0.0318 0.98 0.0177 0.98 0.0124 0.99 0.0082 1.00

1/80 0.0160 0.99 0.0089 0.99 0.0062 0.99 0.0041 1.00

1/160 0.0080 1.00 0.0045 1.00 0.0031 1.00 0.0021 1.00

1/320 0.0040 1.00 0.0022 1.00 0.0016 1.00 0.0010 1.00

1/640 0.0020 1.00 0.0011 1.00 0.0008 1.00 0.0005 1.00

Table: Estimated order of convergence for the explicit Euler method using the parameters

α = 0.4, 0.8, 1.0, and 1.2.
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NUMERICAL RESULTS
Convergence

α = 0.4 α = 0.8 α = 1.0 α = 1.2
∆t E∆t EOC E∆t EOC E∆t EOC E∆t EOC

1/10 0.0323 0.0487 0.0517 0.0519

1/20 0.0161 1.00 0.0241 1.01 0.0254 1.02 0.0253 1.03

1/40 0.0081 1.00 0.0120 1.01 0.0126 1.01 0.0125 1.02

1/80 0.0040 1.00 0.0060 1.00 0.0063 1.00 0.0062 1.01

1/160 0.0020 1.00 0.0030 1.00 0.0031 1.00 0.0031 1.00

1/320 0.0010 1.00 0.0015 1.00 0.0016 1.00 0.0015 1.00

1/640 0.0005 1.00 0.0007 1.00 0.0008 1.00 0.0008 1.00

Table: Estimated order of convergence for the implicit Euler method using the parameters

α = 0.4, 0.8, 1.0, and 1.2.
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NUMERICAL RESULTS
Anomalous diffusion

(a) T = 1, α = 1/2 (b) T = 1, α = 3/4 (c) T = 1, α = 1

(d) T = 10, α = 1/2 (e) T = 10, α = 3/4 (f) T = 10, α = 1

Figure: Anomalous sub-diffusion with T = 1, 10 and α = 1/2, 3/4, 1 for the Lena image.
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NUMERICAL RESULTS
Modified dilation

(a) T = 1, α = 1/2 (b) T = 1, α = 3/4 (c) T = 1, α = 1

(d) T = 10, α = 1/2 (e) T = 10, α = 3/4 (f) T = 10, α = 1

Figure: Modified dilation with T = 1, 10 and α = 1/2, 3/4, 1 for the Lena image.
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Part V: Summary & outlook
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SUMMARY & OUTLOOK

Modified standard diffusion as well as dilation & erosion for gray-valued

images.

Treated numerically by explicit and implicit Euler method.

Showed convergence and stability.

Consider second-order approximation of the Caputo fractional derivative.

Multistep methods (BDF, Adams-Moulton, and Adams-Bashforth methods).

Consider corresponding inverse problems (denoising).

Extension for higher morphological operations.

Extending the approach to color images.
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