ANOMALOUS DIFFUSION, DILATION, AND EROSION IN IMAGE PROCESSING

joint work with Sophia Vorderwülbecke & Bernhard Burgeth

SIAM CSE 2019 (MS 62) | February 25, 2019 | Andreas Kleefeld | Jülich Supercomputing Centre, Germany

TABLE OF CONTENTS

- Part 1: Introduction & motivation
- Part 2: Anomalous diffusion
- Part 3: Modified dilation & erosion
- Part 4: Numerical results
- Part 5: Summary & outlook

Part I: Introduction & motivation

INTRODUCTION & MOTIVATION

General idea

- Time-dependent partial differential equations (PDEs) arise naturally in image processing.
- For example: convolution of image with Gaussian kernel which is equivalent to solving a linear diffusion equation.
- Other PDEs: dilation/erosion (evolution equations).
- Can serve as building blocks for higher morphological operations (opening, closing, gradients) or deblurring filters.

INTRODUCTION & MOTIVATION

What is new?

- Different type of generalization of an evolution equation.
- Temporal derivative of fractional order α : $\frac{\partial^{\alpha}}{\partial t^{\alpha}}$ with $\alpha \in (0,2)$.
- Definition of the fractional derivative as an extension of integration concatenated with regular differentiation (Caputo).
- Global information are considered.
- Also interesting for other applications.
- Up to now this approach was only considered for specific fractional orders as $\alpha = 1/2$ and not for morphological operations.

Part II: Anomalous diffusion

Mathematical model

Diffusion equation:

$$\frac{{}^{c}\partial^{\alpha}}{\partial t^{\alpha}}u=\operatorname{div}(\kappa \operatorname{grad} u),$$

where κ is a constant.

Caputo fractional derivative:

$$\frac{{}^c\partial^{\alpha}}{\partial t^{\alpha}}u=\frac{1}{\Gamma(m+1-\alpha)}\int_0^t\frac{u^{(m+1)}(\tau)}{(t-\tau)^{\alpha-m}}d\tau\,,$$

where $m = |\alpha|$ and $0 < \alpha < 1$ or $1 < \alpha < 2$.

- Initial condition(s): given gray-value image and in case of super-diffusion we need a second initial condition.
- Boundary condition: homogeneous Neumann.

Space discretization

- 2D-grid with h = 1 and $M \times N$ grid points.
- Approximation of Laplace operator with centered differences for interior nodes: $\kappa(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} 4u_{i,j})$.
- Homogeneous Neumann boundaries for exterior nodes.

Time discretization

- Grid of the form $t_k = k\Delta t, k = 0, \dots, P$ with grid size $\Delta t = T/P$.
- Approximation of Caputo derivative by Grünwald-Letnikov formula:

$$\left.\frac{^{c}\partial^{\alpha}u}{\partial t^{\alpha}}\right|_{\mathbf{x}=(x_{i},y_{j})}^{t=t_{k+1}}\approx\sum_{\ell=0}^{k+1}c_{\ell}^{(\alpha)}u_{i,j}^{k+1-\ell}-\sum_{n=0}^{m}\frac{(t_{k+1})^{n-\alpha}}{\Gamma(n-\alpha+1)}u^{(m)}(x_{i},y_{j}),$$

where

$$c_0^{(\alpha)} = (\Delta t)^{-\alpha}, \qquad c_k^{(\alpha)} = \left(1 - \frac{1+\alpha}{k}\right) c_{k-1}^{(\alpha)}.$$

Numerical schemes

Explicit:

$$\sum_{\ell=0}^{k+1} c_{\ell}^{(\alpha)} u_{i,j}^{k+1-\ell} - \sum_{n=0}^{m} \frac{(t_{k+1})^{n-\alpha}}{\Gamma(n-\alpha+1)} u^{(m)}(x_i, y_j)$$

$$= \kappa \left(u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - 4u_{i,j}^k \right).$$

Implicit:

$$\begin{split} &\sum_{\ell=0}^{k+1} c_{\ell}^{(\alpha)} u_{i,j}^{k+1-\ell} - \sum_{n=0}^{m} \frac{(t_{k+1})^{n-\alpha}}{\Gamma(n-\alpha+1)} u^{(m)}(x_i, y_j) \\ &= \kappa \left(u_{i+1,j}^{k+1} + u_{i-1,j}^{k+1} + u_{i,j+1}^{k+1} + u_{i,j-1}^{k+1} - 4u_{i,j}^{k+1} \right) \,. \end{split}$$

Numerical schemes

Explicit:

$$\mathbf{u}^{k+1} = A \mathbf{u}^k - \mathbf{b}_{ex}$$
 with $A = \alpha I_{MN} + (\Delta t)^{\alpha} \kappa \cdot D_2$.

Implicit:

$$B\mathbf{u}^{k+1} = \mathbf{b}_{im}$$
 with $B = -(\Delta t)^{-\alpha}I_{MN} + \kappa \cdot D_2$.

 D_2 is the 2D-Laplacian and \mathbf{b}_{ex} and \mathbf{b}_{im} are given by

$$\mathbf{b}_{ex} = (\Delta t)^{\alpha} \left(\sum_{\ell=2}^{k+1} c_{\ell}^{(\alpha)} \mathbf{u}^{k+1-\ell} - \sum_{n=0}^{m} \frac{(t_{k+1})^{n-\alpha}}{\Gamma(n-\alpha+1)} u^{(m)}(x_i, y_j) \right) ,$$

$$\mathbf{b}_{im} = -\alpha(\Delta t)^{-\alpha}\mathbf{u}^{k} + \left(\sum_{\ell=2}^{k+1} c_{\ell}^{(\alpha)}\mathbf{u}^{k+1-\ell} - \sum_{n=0}^{m} \frac{(t_{k+1})^{n-\alpha}}{\Gamma(n-\alpha+1)} u^{(m)}(x_{i}, y_{j})\right).$$

Part III: Modified dilation & erosion

MODIFIED DILATION & EROSION

Mathematical model & discretization

Dilation & erosion equation:

$$\frac{^{c}\partial^{\alpha}}{\partial t^{\alpha}}u = \pm \sqrt{\left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2}}.$$

- Approximation of Caputo fractional derivative as before.
- Approximation in space by first-order finite difference scheme of Rouy-Tourin:

$$\left[\max(-u_{i,j}+u_{i-1,j},u_{i+1,j}-u_{i,j},0)^2+\max(-u_{i,j}+u_{i,j-1},u_{i,j+1}-u_{i,j},0)^2\right]^{1/2}\;.$$

MODIFIED DILATION & EROSION

Numerical schemes

As before, we obtain an iterative scheme of the form

$$\mathbf{u}^{k+1} = \alpha \mathbf{u}^k + (\Delta t)^{\alpha} \mathbf{b}_{dt} \pm (\Delta t)^{\alpha} \sqrt{\mathbf{b}_{dx}^2 + \mathbf{b}_{dy}^2},$$

where

$$\mathbf{b}_{dt} = -\sum_{l=2}^{k+1} c_l^{(\alpha)} \mathbf{u}^{k+1-l} + \frac{t_{k+1}^{-\alpha}}{\Gamma(1-\alpha)} \mathbf{u}^0$$

and the *i*-th, *j*-th entry of \mathbf{b}_{dx} is given by

$$\max \left(-u_{i,j}^k + u_{i-1,j}^k, u_{i+1,j}^k - u_{i,j}^k, 0\right)$$

and \mathbf{b}_{dy} analogously.

Part IV: Numerical results

Stability

Linear test problem:

$$rac{^c\partial^lpha u(t)}{\partial t^lpha}=\lambda u(t)\,,\quad \lambda\in\mathbb{C}\,, \ u(0)=u_0 ext{ for } 0$$

- Explicit method: $\mathbb{C}\setminus\{(1-z)^{\alpha}/z:|z|\leq 1\}$.
- Implicit method: $\mathbb{C}\setminus\{(1-z)^\alpha:|z|\leq 1\}$.

Stability

Figure: Stability regions for explicit Euler method using parameters $\alpha=0.4$, $\alpha=0.6$, and $\alpha=0.8$ (first row) and $\alpha=1.0$, $\alpha=1.2$, and $\alpha=1.4$ (second row).

SIAM CSE 2019 (MS 62) | February 25, 2019

Stability

Figure: Stability regions for implicit Euler method using parameters $\alpha=0.4$, $\alpha=0.6$, and $\alpha=0.8$ (first row) and $\alpha=1.0$, $\alpha=1.2$, and $\alpha=1.4$ (second row).

Stability

- Interval of stability is $(-2^{\alpha}, 0)$.
- Implicit Euler method is *A*-stable for $0 < \alpha \le 1$ whereas we loose this property for $1 < \alpha < 2$.
- Could investigate $A(\theta)$ stability, where $\theta \leq \pi/2$ will depend on α .
- We obtain the θ angles (in degrees °) 90, 81, 72, 63, 54, 45, 36, 27, 18, and 9 for the parameters α = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, and 1.9, respectively.
- Hence, it appears to be that θ is given by $(2 \alpha) \cdot 90^{\circ}$ for $1 \le \alpha < 2$ (the proof remains open).

Convergence

- Homogeneous initial conditions: convergence order 1
- lacktriangle Non-homogenous initial conditions: convergence order depends on lpha
- Calculation of error:

$$\frac{{}^c\partial^\alpha u(t)}{\partial t^\alpha}=t^2\,,\quad u(0)=0\,,\quad 0\leq t\leq 1\,,\quad 1<\alpha\leq 2$$

with exact solution

$$u(t) = \frac{\Gamma(3+\alpha)}{\Gamma(3)}t^{2+\alpha}.$$

Estimated convergence order (EOC):

$$\mathrm{EOC} = rac{log(E_{\Delta t}/E_{\Delta t/2})}{log(2)}$$
, where $E_{\Delta t} = |u(1) - \tilde{u}_{\Delta t}(1)|$.

Convergence

	$\alpha = 0.4$		$\alpha = 0.8$		$\alpha = 1.0$		$\alpha = 1.2$	
Δt	$E_{\Delta t}$	EOC						
1/10	0.1220		0.0685		0.0483		0.0324	
1/20	0.0627	0.96	0.0350	0.97	0.0246	0.98	0.0164	0.99
1/40	0.0318	0.98	0.0177	0.98	0.0124	0.99	0.0082	1.00
1/80	0.0160	0.99	0.0089	0.99	0.0062	0.99	0.0041	1.00
1/160	0.0080	1.00	0.0045	1.00	0.0031	1.00	0.0021	1.00
1/320	0.0040	1.00	0.0022	1.00	0.0016	1.00	0.0010	1.00
1/640	0.0020	1.00	0.0011	1.00	0.0008	1.00	0.0005	1.00

Table: Estimated order of convergence for the explicit Euler method using the parameters $\alpha = 0.4, 0.8, 1.0,$ and 1.2.

Convergence

	$\alpha = 0.4$		$\alpha = 0.8$		$\alpha = 1.0$		$\alpha = 1.2$	
Δt	$E_{\Delta t}$	EOC						
1/10	0.0323		0.0487		0.0517		0.0519	
1/20	0.0161	1.00	0.0241	1.01	0.0254	1.02	0.0253	1.03
1/40	0.0081	1.00	0.0120	1.01	0.0126	1.01	0.0125	1.02
1/80	0.0040	1.00	0.0060	1.00	0.0063	1.00	0.0062	1.01
1/160	0.0020	1.00	0.0030	1.00	0.0031	1.00	0.0031	1.00
1/320	0.0010	1.00	0.0015	1.00	0.0016	1.00	0.0015	1.00
1/640	0.0005	1.00	0.0007	1.00	0.0008	1.00	0.0008	1.00

Table: Estimated order of convergence for the implicit Euler method using the parameters $\alpha = 0.4, 0.8, 1.0,$ and 1.2.

Anomalous diffusion

(a)
$$T = 1, \alpha = 1/2$$

(d) $T = 10, \alpha = 1/2$

(b) $T = 1, \alpha = 3/4$

(e) $T = 10, \alpha = 3/4$

(C) $T = 1, \alpha = 1$

(f) $T = 10, \alpha = 1$

Figure: Anomalous sub-diffusion with T = 1,10 and $\alpha = 1/2,3/4,1$ for the Lena image.

Modified dilation

(a)
$$T = 1, \alpha = 1/2$$

(d) $T = 10, \alpha = 1/2$

(b) $T = 1, \alpha = 3/4$

(e) $T = 10, \alpha = 3/4$

(C) $T = 1, \alpha = 1$

(f) $T = 10, \alpha = 1$

Figure: Modified dilation with T = 1, 10 and $\alpha = 1/2, 3/4, 1$ for the Lena image.

Part V: Summary & outlook

SUMMARY & OUTLOOK

- Modified standard diffusion as well as dilation & erosion for gray-valued images.
- Treated numerically by explicit and implicit Euler method.
- Showed convergence and stability.
- Consider second-order approximation of the Caputo fractional derivative.
- Multistep methods (BDF, Adams-Moulton, and Adams-Bashforth methods).
- Consider corresponding inverse problems (denoising).
- Extension for higher morphological operations.
- Extending the approach to color images.

REFERENCE

A. KLEEFELD, S. VORDERWÜLBECKE, & B. BURGETH, *Anomalous diffusion, dilation, and erosion in image processing*, International Journal of Computer Mathematics 95 (6–7), 1375–1393 (2018), special issue: "Advances on Computational Fractional Partial Differential Equations".

