000861214 001__ 861214
000861214 005__ 20210130000737.0
000861214 0247_ $$2doi$$a10.1002/term.2838
000861214 0247_ $$2ISSN$$a1932-6254
000861214 0247_ $$2ISSN$$a1932-7005
000861214 0247_ $$2pmid$$apmid:30815982
000861214 0247_ $$2WOS$$aWOS:000473660800005
000861214 0247_ $$2altmetric$$aaltmetric:56231758
000861214 0247_ $$2Handle$$a2128/22883
000861214 037__ $$aFZJ-2019-01735
000861214 082__ $$a610
000861214 1001_ $$0P:(DE-HGF)0$$aBlaschke, Stefan$$b0
000861214 245__ $$aSubstrate elasticity induces quiescence and promotes neurogenesis of primary neural stem cells - a biophysical in vitro model of the physiological cerebral milieu
000861214 260__ $$aHoboken, NJ [u.a.]$$bWiley$$c2019
000861214 3367_ $$2DRIVER$$aarticle
000861214 3367_ $$2DataCite$$aOutput Types/Journal article
000861214 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1561624565_25932
000861214 3367_ $$2BibTeX$$aARTICLE
000861214 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861214 3367_ $$00$$2EndNote$$aJournal Article
000861214 520__ $$aIn the brain, neural stem cells (NSC) are tightly regulated by external signals and biophysical cues mediated by the local microenvironment or “niche.” In particular, the influence of tissue elasticity, known to fundamentally affect the function of various cell types in the body, on NSC remains poorly understood. We, accordingly, aimed to characterize the effects of elastic substrates on critical NSC functions. Primary rat NSC were grown as monolayers on polydimethylsiloxane‐ (PDMS‐) based gels. PDMS‐coated cell culture plates, simulating the physiological microenvironment of the living brain, were generated in various degrees of elasticity, ranging from 1 to 50 kPa; additionally, results were compared with regular glass plates as usually used in cell culture work. Survival of NSC on the PDMS‐based substrates was unimpaired. The proliferation rate on 1 kPa PDMS decreased by 45% compared with stiffer PMDS substrates of 50 kPa (p < 0.05) whereas expression of cyclin‐dependent kinase inhibitor 1B/p27Kip1 increased more than two fold (p < 0.01), suggesting NSC quiescence. NSC differentiation was accelerated on softer substrates and favored the generation of neurons (42% neurons on 1 kPa PDMS vs. 25% on 50 kPa PDMS; p < 0.05). Neurons generated on 1 kPa PDMS showed 29% longer neurites compared with those on stiffer PDMS substrates (p < 0.05), suggesting optimized neuronal maturation and an accelerated generation of neuronal networks. Data show that primary NSC are significantly affected by the mechanical properties of their microenvironment. Culturing NSC on a substrate of brain‐like elasticity keeps them in their physiological, quiescent state and increases their neurogenic potential.
000861214 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000861214 588__ $$aDataset connected to CrossRef
000861214 7001_ $$0P:(DE-HGF)0$$aVay, Sabine Ulrike$$b1
000861214 7001_ $$0P:(DE-HGF)0$$aPallast, Niklas$$b2
000861214 7001_ $$0P:(DE-HGF)0$$aRabenstein, Monika$$b3
000861214 7001_ $$0P:(DE-Juel1)169770$$aAbraham, Jella-Andrea$$b4$$ufzj
000861214 7001_ $$0P:(DE-Juel1)145159$$aLinnartz, Christina$$b5$$ufzj
000861214 7001_ $$0P:(DE-Juel1)164475$$aHoffmann, Marco$$b6$$ufzj
000861214 7001_ $$0P:(DE-Juel1)128815$$aHersch, Nils$$b7$$ufzj
000861214 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b8$$ufzj
000861214 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b9$$ufzj
000861214 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon Rudolf$$b10$$ufzj
000861214 7001_ $$00000-0001-8036-395X$$aRueger, Maria Adele$$b11$$eCorresponding author
000861214 773__ $$0PERI:(DE-600)2316155-3$$a10.1002/term.2838$$n6$$p960-972$$tJournal of tissue engineering and regenerative medicine$$v13$$x1932-6254$$y2019
000861214 8564_ $$uhttps://juser.fz-juelich.de/record/861214/files/Blaschke_et_al-2019-Journal_of_Tissue_Engineering_and_Regenerative_Medicine.pdf$$yRestricted
000861214 8564_ $$uhttps://juser.fz-juelich.de/record/861214/files/Blaschke_et_al-2019-Journal_of_Tissue_Engineering_and_Regenerative_Medicine.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861214 8564_ $$uhttps://juser.fz-juelich.de/record/861214/files/revised-figures_Blaschke-et-al_TERM.pdf$$yPublished on 2019-02-27. Available in OpenAccess from 2020-02-27.
000861214 8564_ $$uhttps://juser.fz-juelich.de/record/861214/files/revised-manuscript_Blaschke-et-al_TERM_unmarked.pdf$$yPublished on 2019-02-27. Available in OpenAccess from 2020-02-27.
000861214 8564_ $$uhttps://juser.fz-juelich.de/record/861214/files/revised-figures_Blaschke-et-al_TERM.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-02-27. Available in OpenAccess from 2020-02-27.
000861214 8564_ $$uhttps://juser.fz-juelich.de/record/861214/files/revised-manuscript_Blaschke-et-al_TERM_unmarked.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-02-27. Available in OpenAccess from 2020-02-27.
000861214 909CO $$ooai:juser.fz-juelich.de:861214$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000861214 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b0
000861214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169770$$aForschungszentrum Jülich$$b4$$kFZJ
000861214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145159$$aForschungszentrum Jülich$$b5$$kFZJ
000861214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164475$$aForschungszentrum Jülich$$b6$$kFZJ
000861214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128815$$aForschungszentrum Jülich$$b7$$kFZJ
000861214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b8$$kFZJ
000861214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b9$$kFZJ
000861214 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b10$$kFZJ
000861214 9101_ $$0I:(DE-588b)5008462-8$$60000-0001-8036-395X$$aForschungszentrum Jülich$$b11$$kFZJ
000861214 9101_ $$0I:(DE-HGF)0$$60000-0001-8036-395X$$a INM-3$$b11
000861214 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000861214 9141_ $$y2019
000861214 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861214 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861214 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000861214 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ TISSUE ENG REGEN M : 2017
000861214 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861214 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861214 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861214 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861214 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861214 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861214 920__ $$lyes
000861214 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000861214 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x1
000861214 9801_ $$aFullTexts
000861214 980__ $$ajournal
000861214 980__ $$aVDB
000861214 980__ $$aUNRESTRICTED
000861214 980__ $$aI:(DE-Juel1)INM-3-20090406
000861214 980__ $$aI:(DE-Juel1)ICS-7-20110106
000861214 981__ $$aI:(DE-Juel1)IBI-2-20200312