001     861244
005     20240711101513.0
024 7 _ |a 10.1038/s41598-019-39372-2
|2 doi
024 7 _ |a 2128/21786
|2 Handle
024 7 _ |a pmid:30792458
|2 pmid
024 7 _ |a WOS:000459281500071
|2 WOS
037 _ _ |a FZJ-2019-01748
082 _ _ |a 600
100 1 _ |a Rodenbücher, Christian
|0 P:(DE-Juel1)142194
|b 0
|e Corresponding author
245 _ _ |a Current channeling along extended defects during electroreduction of SrTiO3
260 _ _ |a [London]
|c 2019
|b Macmillan Publishers Limited, part of Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1555509262_32166
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Electroreduction experiments on metal oxides are well established for investigating the nature of the material change in memresistive devices, whose basic working principle is an electrically-induced reduction. While numerous research studies on this topic have been conducted, the influence of extended defects such as dislocations has not been addressed in detail hitherto. Here, we show by employing thermal microscopy to detect local Joule heating effects in the first stage of electroreduction of SrTiO3 that the current is channelled along extended defects such as dislocations which were introduced mechanically by scratching or sawing. After prolonged degradation, the matrix of the crystal is also electroreduced and the influence of the initially present dislocations diminished. At this stage, a hotspot at the anode develops due to stoichiometry polarisation leading not only to the gliding of existing dislocations, but also to the evolution of new dislocations. Such a formation is caused by electrical and thermal stress showing dislocations may play a significant role in resistive switching effects.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Menzel, Stephan
|0 P:(DE-Juel1)158062
|b 1
700 1 _ |a Wrana, Dominik
|0 0000-0002-8239-0043
|b 2
700 1 _ |a Gensch, Thomas
|0 P:(DE-Juel1)131924
|b 3
700 1 _ |a Korte, Carsten
|0 P:(DE-Juel1)140525
|b 4
700 1 _ |a Krok, Franciszek
|0 0000-0002-6931-3545
|b 5
700 1 _ |a Szot, Krzysztof
|0 0000-0001-8773-2754
|b 6
773 _ _ |a 10.1038/s41598-019-39372-2
|g Vol. 9, no. 1, p. 2502
|0 PERI:(DE-600)2615211-3
|n 1
|p 2502
|t Scientific reports
|v 9
|y 2019
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/861244/files/30036760410008766812INVOIC2676133360001.pdf
856 4 _ |u https://juser.fz-juelich.de/record/861244/files/s41598-019-39372-2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861244/files/s41598-019-39372-2.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861244/files/30036760410008766812INVOIC2676133360001.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:juser.fz-juelich.de:861244
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)142194
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158062
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131924
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)140525
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-4-20110106
|k ICS-4
|l Zelluläre Biophysik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013
981 _ _ |a I:(DE-Juel1)IBI-1-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21