000861285 001__ 861285
000861285 005__ 20250314084118.0
000861285 0247_ $$2doi$$a10.1016/j.parco.2018.12.006
000861285 0247_ $$2ISSN$$a0167-8191
000861285 0247_ $$2ISSN$$a1872-7336
000861285 0247_ $$2Handle$$a2128/22211
000861285 0247_ $$2WOS$$aWOS:000471087700011
000861285 037__ $$aFZJ-2019-01782
000861285 082__ $$a620
000861285 1001_ $$0P:(DE-Juel1)168253$$aHermanns, Marc-André$$b0$$eCorresponding author$$ufzj
000861285 245__ $$aThe MPI_T Events Interface: An Early Evaluation and Overview of the Interface
000861285 260__ $$aAmsterdam [u.a.]$$bNorth-Holland, Elsevier Science$$c2019
000861285 3367_ $$2DRIVER$$aarticle
000861285 3367_ $$2DataCite$$aOutput Types/Journal article
000861285 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1558446295_22399
000861285 3367_ $$2BibTeX$$aARTICLE
000861285 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861285 3367_ $$00$$2EndNote$$aJournal Article
000861285 520__ $$aUnderstanding the behavior of parallel applications that use the Message Passing Interface (MPI) is critical for optimizing communication performance. Performance tools for MPI currently rely on the PMPI Profiling Interface or the MPI Tool Information Interface, MPI_T, for portably collecting information for performance measurement and analysis. While tools using these interfaces have proven to be extremely valuable for performance tuning, these interfaces only provide synchronous information, i.e., when an MPI or an MPI_T function is called. There is currently no option for collecting information about asynchronous events from within the MPI library. In this work we propose a callback-driven interface for event notification from MPI implementations. Our approach is integrated in the existing MPI_T interface and provides a portable API for tools to discover and register for events of interest. We implement our MPI_T Events interface in Open MPI and demonstrate its functionality and usability with a small logging tool (MEL) as well as an early integration into the comprehensive measurement infrastructure Score-P.
000861285 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000861285 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x1
000861285 588__ $$aDataset connected to CrossRef
000861285 7001_ $$0P:(DE-HGF)0$$aHjelm, Nathan T.$$b1
000861285 7001_ $$0P:(DE-Juel1)132163$$aKnobloch, Michael$$b2
000861285 7001_ $$0P:(DE-HGF)0$$aMohror, Kathryn$$b3
000861285 7001_ $$0P:(DE-HGF)0$$aSchulz, Martin$$b4
000861285 773__ $$0PERI:(DE-600)1466340-5$$a10.1016/j.parco.2018.12.006$$gp. S0167819118303314$$p119-130$$tParallel computing$$v85$$x0167-8191$$y2019
000861285 8564_ $$uhttps://juser.fz-juelich.de/record/861285/files/mpi_t-events-interface.pdf$$yOpenAccess
000861285 8564_ $$uhttps://juser.fz-juelich.de/record/861285/files/mpi_t-events-interface.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861285 909CO $$ooai:juser.fz-juelich.de:861285$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168253$$aForschungszentrum Jülich$$b0$$kFZJ
000861285 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132163$$aForschungszentrum Jülich$$b2$$kFZJ
000861285 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000861285 9141_ $$y2019
000861285 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861285 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000861285 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861285 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPARALLEL COMPUT : 2017
000861285 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861285 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861285 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861285 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861285 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861285 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861285 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861285 920__ $$lyes
000861285 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000861285 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000861285 980__ $$ajournal
000861285 980__ $$aVDB
000861285 980__ $$aUNRESTRICTED
000861285 980__ $$aI:(DE-Juel1)JSC-20090406
000861285 980__ $$aI:(DE-82)080012_20140620
000861285 9801_ $$aFullTexts