000861287 001__ 861287
000861287 005__ 20210130000752.0
000861287 0247_ $$2doi$$a10.1103/PhysRevD.99.014502
000861287 0247_ $$2ISSN$$a0556-2821
000861287 0247_ $$2ISSN$$a1089-4918
000861287 0247_ $$2ISSN$$a1538-4500
000861287 0247_ $$2ISSN$$a1550-2368
000861287 0247_ $$2ISSN$$a1550-7998
000861287 0247_ $$2ISSN$$a2470-0010
000861287 0247_ $$2ISSN$$a2470-0029
000861287 0247_ $$2Handle$$a2128/21801
000861287 0247_ $$2WOS$$aWOS:000454769000004
000861287 0247_ $$2altmetric$$aaltmetric:53451038
000861287 037__ $$aFZJ-2019-01784
000861287 082__ $$a530
000861287 1001_ $$0P:(DE-HGF)0$$aBonati, Claudio$$b0$$eCorresponding author
000861287 245__ $$aRoberge-Weiss endpoint and chiral symmetry restoration in N f = 2 + 1 QCD
000861287 260__ $$aMelville, NY$$bInst.812068$$c2019
000861287 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2019-01-03
000861287 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2019-01-01
000861287 3367_ $$2DRIVER$$aarticle
000861287 3367_ $$2DataCite$$aOutput Types/Journal article
000861287 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582019601_32444
000861287 3367_ $$2BibTeX$$aARTICLE
000861287 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861287 3367_ $$00$$2EndNote$$aJournal Article
000861287 520__ $$aWe investigate the fate of the Roberge-Weiss endpoint transition and its connection with the restoration of chiral symmetry as the chiral limit of Nf=2+1 QCD is approached. We adopt a stout staggered discretization on lattices with Nt=4 sites in the temporal direction; the chiral limit is approached maintaining a constant physical value of the strange-to-light mass ratio and exploring three different light quark masses, corresponding to pseudo-Goldstone pion masses mπ≃100, 70 and 50 MeV around the transition. A finite size scaling analysis provides evidence that the transition remains second order, in the 3D Ising universality class, in all the explored mass range. The residual chiral symmetry of the staggered action also allows us to investigate the relation between the Roberge-Weiss endpoint transition and the chiral restoration transition as the chiral limit is approached: our results, including the critical scaling of the chiral condensate, are consistent with a coincidence of the two transitions in the chiral limit; however we are not able to discern the symmetry controlling the critical behavior, because the critical indices relevant to the scaling of the chiral condensate are very close to each other for the two possible universality classes [3D Ising or O(2)].
000861287 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000861287 536__ $$0G:(DE-Juel1)PHD-NO-GRANT-20170405$$aPhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)$$cPHD-NO-GRANT-20170405$$x1
000861287 542__ $$2Crossref$$i2019-01-03$$uhttps://creativecommons.org/licenses/by/4.0/
000861287 588__ $$aDataset connected to CrossRef
000861287 7001_ $$0P:(DE-HGF)0$$aCalore, Enrico$$b1
000861287 7001_ $$0P:(DE-HGF)0$$aD’Elia, Massimo$$b2
000861287 7001_ $$0P:(DE-HGF)0$$aMesiti, Michele$$b3
000861287 7001_ $$0P:(DE-HGF)0$$aNegro, Francesco$$b4
000861287 7001_ $$0P:(DE-HGF)0$$aSanfilippo, Francesco$$b5
000861287 7001_ $$0P:(DE-HGF)0$$aSchifano, Sebastiano Fabio$$b6
000861287 7001_ $$0P:(DE-Juel1)171116$$aSilvi, Giorgio$$b7
000861287 7001_ $$0P:(DE-HGF)0$$aTripiccione, Raffaele$$b8
000861287 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.99.014502$$b : American Physical Society (APS), 2019-01-03$$n1$$p014502$$tPhysical Review D$$v99$$x2470-0010$$y2019
000861287 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.99.014502$$gVol. 99, no. 1, p. 014502$$n1$$p014502$$tPhysical review / D$$v99$$x2470-0010$$y2019
000861287 8564_ $$uhttps://juser.fz-juelich.de/record/861287/files/PhysRevD.99.014502.pdf$$yOpenAccess
000861287 8564_ $$uhttps://juser.fz-juelich.de/record/861287/files/PhysRevD.99.014502.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861287 909CO $$ooai:juser.fz-juelich.de:861287$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171116$$aForschungszentrum Jülich$$b7$$kFZJ
000861287 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000861287 9141_ $$y2019
000861287 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861287 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000861287 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861287 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2016
000861287 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861287 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861287 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861287 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861287 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861287 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861287 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861287 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861287 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861287 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000861287 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000861287 980__ $$ajournal
000861287 980__ $$aVDB
000861287 980__ $$aI:(DE-Juel1)JSC-20090406
000861287 980__ $$aUNRESTRICTED
000861287 9801_ $$aFullTexts