001     861288
005     20210130000752.0
024 7 _ |a 2128/21807
|2 Handle
037 _ _ |a FZJ-2019-01785
100 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 0
111 2 _ |a Conference on Big Data from Space (BiDS'19)
|c Munich
|d 2019-02-19 - 2019-02-21
|w Germany
245 _ _ |a Remote Sensing Data Analytics with the Udocker Container Tool using Multi-GPU Deep Learning Systems
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1552413549_13872
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Multi-GPU systems are in continuous development todeal with the challenges of intensive computational big dataproblems. On the one hand, parallel architectures provide atremendous computation capacity and outstanding scalability.On the other hand, the production path in multi-user environmentsfaces several roadblocks since they do not grant rootprivileges to the users. Containers provide flexible strategiesfor packing, deploying and running isolated applicationprocesses within multi-user systems and enable scientific reproducibility.This paper describes the usage and advantagesthat the uDocker container tool offers for the developmentof deep learning models in the described context. The experimentalresults show that uDocker is more transparent todeploy for less tech-savvy researchers and allows the applicationto achieve processing time with negligible overheadcompared to an uncontainerized environment.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |a DEEP-EST - DEEP - Extreme Scale Technologies (754304)
|0 G:(EU-Grant)754304
|c 754304
|f H2020-FETHPC-2016
|x 1
536 _ _ |a DEEP-HybridDataCloud - Designing and Enabling E-infrastructures for intensive Processing in a Hybrid DataCloud (777435)
|0 G:(EU-Grant)777435
|c 777435
|f H2020-EINFRA-2017
|x 2
700 1 _ |a Kozlov, Valentin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Götz, Markus
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Riedel, Morris
|0 P:(DE-Juel1)132239
|b 3
856 4 _ |u https://juser.fz-juelich.de/record/861288/files/BiDS_2019_poster.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861288/files/BiDS_2019_poster.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:861288
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132239
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21