000861302 001__ 861302
000861302 005__ 20210130000756.0
000861302 0247_ $$2doi$$a10.1016/j.media.2018.11.004
000861302 0247_ $$2ISSN$$a1361-8415
000861302 0247_ $$2ISSN$$a1361-8423
000861302 0247_ $$2ISSN$$a1361-8431
000861302 0247_ $$2pmid$$apmid:30468969
000861302 0247_ $$2WOS$$aWOS:000457512600002
000861302 037__ $$aFZJ-2019-01797
000861302 082__ $$a610
000861302 1001_ $$0P:(DE-Juel1)131657$$aLindemeyer, J.$$b0$$eCorresponding author
000861302 245__ $$aQuality-based UnwRap of SUbdivided Large Arrays (URSULA) for high-resolution MRI data
000861302 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2019
000861302 3367_ $$2DRIVER$$aarticle
000861302 3367_ $$2DataCite$$aOutput Types/Journal article
000861302 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553881841_25990
000861302 3367_ $$2BibTeX$$aARTICLE
000861302 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861302 3367_ $$00$$2EndNote$$aJournal Article
000861302 520__ $$aIn Magnetic Resonance Imaging, mapping of the static magnetic field and the magnetic susceptibility is based on multidimensional phase measurements. Phase data are ambiguous and have to be unwrapped to their true range in order to exhibit a correct representation of underlying features. High-resolution imaging at ultra-high fields, where susceptibility and phase contrast are natural tools, can generate large datasets, which tend to dramatically increase computing time demands for spatial unwrapping algorithms. This article describes a novel method, URSULA, which introduces an artificial volume compartmentalisation that allows large-scale unwrapping problems to be broken down, making URSULA ideally suited for computational parallelisation. In the presented study, URSULA is illustrated with a quality-guided unwrapping approach. Validation is performed on numerical data and an application on a high-resolution measurement, at the clinical field strength of 3T is demonstrated. In conclusion, URSULA allows for a reduction of the problem size, a substantial speed-up and for handling large data sets without sacrificing the overall accuracy of the resulting phase information.
000861302 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000861302 588__ $$aDataset connected to CrossRef
000861302 7001_ $$0P:(DE-Juel1)131782$$aOros-Peusquens, A.-M.$$b1$$ufzj
000861302 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b2$$ufzj
000861302 773__ $$0PERI:(DE-600)1497450-2$$a10.1016/j.media.2018.11.004$$gVol. 52, p. 13 - 23$$p13 - 23$$tMedical image analysis$$v52$$x1361-8415$$y2019
000861302 909CO $$ooai:juser.fz-juelich.de:861302$$pVDB
000861302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131657$$aForschungszentrum Jülich$$b0$$kFZJ
000861302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131782$$aForschungszentrum Jülich$$b1$$kFZJ
000861302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000861302 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000861302 9141_ $$y2019
000861302 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED IMAGE ANAL : 2017
000861302 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861302 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861302 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861302 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861302 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861302 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861302 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861302 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861302 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000861302 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMED IMAGE ANAL : 2017
000861302 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000861302 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000861302 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000861302 980__ $$ajournal
000861302 980__ $$aVDB
000861302 980__ $$aI:(DE-Juel1)INM-4-20090406
000861302 980__ $$aI:(DE-Juel1)INM-11-20170113
000861302 980__ $$aI:(DE-82)080010_20140620
000861302 980__ $$aUNRESTRICTED