Hauptseite > Publikationsdatenbank > Quality-based UnwRap of SUbdivided Large Arrays (URSULA) for high-resolution MRI data > print |
001 | 861302 | ||
005 | 20210130000756.0 | ||
024 | 7 | _ | |a 10.1016/j.media.2018.11.004 |2 doi |
024 | 7 | _ | |a 1361-8415 |2 ISSN |
024 | 7 | _ | |a 1361-8423 |2 ISSN |
024 | 7 | _ | |a 1361-8431 |2 ISSN |
024 | 7 | _ | |a pmid:30468969 |2 pmid |
024 | 7 | _ | |a WOS:000457512600002 |2 WOS |
037 | _ | _ | |a FZJ-2019-01797 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Lindemeyer, J. |0 P:(DE-Juel1)131657 |b 0 |e Corresponding author |
245 | _ | _ | |a Quality-based UnwRap of SUbdivided Large Arrays (URSULA) for high-resolution MRI data |
260 | _ | _ | |a Amsterdam [u.a.] |c 2019 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1553881841_25990 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a In Magnetic Resonance Imaging, mapping of the static magnetic field and the magnetic susceptibility is based on multidimensional phase measurements. Phase data are ambiguous and have to be unwrapped to their true range in order to exhibit a correct representation of underlying features. High-resolution imaging at ultra-high fields, where susceptibility and phase contrast are natural tools, can generate large datasets, which tend to dramatically increase computing time demands for spatial unwrapping algorithms. This article describes a novel method, URSULA, which introduces an artificial volume compartmentalisation that allows large-scale unwrapping problems to be broken down, making URSULA ideally suited for computational parallelisation. In the presented study, URSULA is illustrated with a quality-guided unwrapping approach. Validation is performed on numerical data and an application on a high-resolution measurement, at the clinical field strength of 3T is demonstrated. In conclusion, URSULA allows for a reduction of the problem size, a substantial speed-up and for handling large data sets without sacrificing the overall accuracy of the resulting phase information. |
536 | _ | _ | |a 573 - Neuroimaging (POF3-573) |0 G:(DE-HGF)POF3-573 |c POF3-573 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Oros-Peusquens, A.-M. |0 P:(DE-Juel1)131782 |b 1 |u fzj |
700 | 1 | _ | |a Shah, N. J. |0 P:(DE-Juel1)131794 |b 2 |u fzj |
773 | _ | _ | |a 10.1016/j.media.2018.11.004 |g Vol. 52, p. 13 - 23 |0 PERI:(DE-600)1497450-2 |p 13 - 23 |t Medical image analysis |v 52 |y 2019 |x 1361-8415 |
909 | C | O | |o oai:juser.fz-juelich.de:861302 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)131657 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)131782 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)131794 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-573 |2 G:(DE-HGF)POF3-500 |v Neuroimaging |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MED IMAGE ANAL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MED IMAGE ANAL : 2017 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-4-20090406 |k INM-4 |l Physik der Medizinischen Bildgebung |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-11-20170113 |k INM-11 |l Jara-Institut Quantum Information |x 1 |
920 | 1 | _ | |0 I:(DE-82)080010_20140620 |k JARA-BRAIN |l JARA-BRAIN |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-4-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-11-20170113 |
980 | _ | _ | |a I:(DE-82)080010_20140620 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|