001     861302
005     20210130000756.0
024 7 _ |a 10.1016/j.media.2018.11.004
|2 doi
024 7 _ |a 1361-8415
|2 ISSN
024 7 _ |a 1361-8423
|2 ISSN
024 7 _ |a 1361-8431
|2 ISSN
024 7 _ |a pmid:30468969
|2 pmid
024 7 _ |a WOS:000457512600002
|2 WOS
037 _ _ |a FZJ-2019-01797
082 _ _ |a 610
100 1 _ |a Lindemeyer, J.
|0 P:(DE-Juel1)131657
|b 0
|e Corresponding author
245 _ _ |a Quality-based UnwRap of SUbdivided Large Arrays (URSULA) for high-resolution MRI data
260 _ _ |a Amsterdam [u.a.]
|c 2019
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1553881841_25990
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In Magnetic Resonance Imaging, mapping of the static magnetic field and the magnetic susceptibility is based on multidimensional phase measurements. Phase data are ambiguous and have to be unwrapped to their true range in order to exhibit a correct representation of underlying features. High-resolution imaging at ultra-high fields, where susceptibility and phase contrast are natural tools, can generate large datasets, which tend to dramatically increase computing time demands for spatial unwrapping algorithms. This article describes a novel method, URSULA, which introduces an artificial volume compartmentalisation that allows large-scale unwrapping problems to be broken down, making URSULA ideally suited for computational parallelisation. In the presented study, URSULA is illustrated with a quality-guided unwrapping approach. Validation is performed on numerical data and an application on a high-resolution measurement, at the clinical field strength of 3T is demonstrated. In conclusion, URSULA allows for a reduction of the problem size, a substantial speed-up and for handling large data sets without sacrificing the overall accuracy of the resulting phase information.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Oros-Peusquens, A.-M.
|0 P:(DE-Juel1)131782
|b 1
|u fzj
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 2
|u fzj
773 _ _ |a 10.1016/j.media.2018.11.004
|g Vol. 52, p. 13 - 23
|0 PERI:(DE-600)1497450-2
|p 13 - 23
|t Medical image analysis
|v 52
|y 2019
|x 1361-8415
909 C O |o oai:juser.fz-juelich.de:861302
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131657
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131782
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131794
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED IMAGE ANAL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MED IMAGE ANAL : 2017
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21