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ABSTRACT

Multi-GPU systems are in continuous development to

deal with the challenges of intensive computational big data

problems. On the one hand, parallel architectures provide a

tremendous computation capacity and outstanding scalability.

On the other hand, the production path in multi-user environ-

ments faces several roadblocks since they do not grant root

privileges to the users. Containers provide flexible strate-

gies for packing, deploying and running isolated application

processes within multi-user systems and enable scientific re-

producibility. This paper describes the usage and advantages

that the uDocker container tool offers for the development

of deep learning models in the described context. The ex-

perimental results show that uDocker is more transparent to

deploy for less tech-savvy researchers and allows the appli-

cation to achieve processing time with negligible overhead

compared to an uncontainerized environment.

Index Terms— Containers, uDocker, multi-GPU, deep

learning, classification, remote sensing.

1. INTRODUCTION

In this era of a growing number of earth observation satellite

and aerial platforms the volume, variety and acquisition rate

of remote sensed images have been dramatically increased.

This introduced remarkable challenges that lie within the en-

tire acquisition and processing data pipeline—i.e., the Vs of

big data [1, 2]. The interpretation of remote sensing images

is not straightforward and requires complex algorithms since

their content depends upon various factors, e.g., the sensor

resolution, the equipment unreliability, the type and amount

of noise, etc. Furthermore, the increased data volume and

demands of real-time applications require the use of high

scalable and parallel processing approaches. While modern

desktop computers and laptops having unprecedented perfor-

mance, e.g., multi-core architectures and built-in accelerators,

they are still limited in terms of computable problems due to

their memory constraints and raw floating-point operations

per second.

Having massive numbers of processors and memory avail-

able, multi-GPU systems can overcome these limitations and

provide processing capacity that well exceed traditional lap-

tops and work stations. Moreover, the utilized dedicated high-

speed networks, such as InfiniBand, enable strong vertical

and horizontal scaling of applications. Despite the impact of

these new architecture on traditional simulation sciences, par-

allel computing is currently experiencing focus and advance-

ments due to the current deep learning trend. Both of the lat-

ter domains influence each other in numerous ways [3] such

as, among others, refreshed attention to hardware and perfor-

mance engineering around tensor operations, the explorations

of scalability boundaries as well as the envisioning simplified,

parallel programming models. At the same time, deep learn-

ing has made revolutionary achievements for the analysis of

remote sensing images [4] possible.

Nevertheless, there are major factors that prevent multi-

GPU and -user systems from being the platform of choice for

researchers developing new deep learning models. It starts

with getting access and computing time on these machines,

but goes well beyond that. Users who develop deep learning

workflows want to focus first and foremost on the purpose

and the realization of their analysis pipeline. This in turn re-

quires them to be in full control of their programming library

stack and underlying system. However, in multi-user systems

administrators are usually in charge of the maintenance and

supervision of the systems; users do not have privileges to

install or modify software and can therefore not easily catch

up with up-to-date libraries. Instead, a user is usually faced

with either a long-pending installation request or a user-land

compilation of their custom software, which needs to be re-

peated for every actively working scientist of the research col-

laboration. At the same time, users seek reproducible science

through computational mobility [5], i.e., the possibility to re-

store a software environment as closely as possible to verify

and continue past research. Containers have drawn a lot of at-

tention in recent years in the parallel computing domain since

they allow the simplification and acceleration of the appli-

cation build and deployment process. Furthermore, for users

working in the parallel computing and deep learning domains,

containerization offers the benefits of scalability without per-

formance penalties compared to traditional virtual machines.

Gomes et al. [9] have proposed uDocker , a novel container

tool that allows the execution of Docker containers without
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Table 1. Comparison of state-of-the art container technologies suitable for execution on multi-user systems. The displayed

table is a heavily modified variant of the previous work from Priedhorsky et al. [6] and Kurtzer et al. [5].

Docker [7] Singularity [5] Shifter [8] Charlie Cloud [6] uDocker [9]

Privilege model Root daemon SUID/UserNS SUID UserNS chroot-like

Current production Linux distros support � � � � �

No privileged or trusted daemon � � � � �

Access to the host filesystem � � � � �

Support for GPU � a) � b) � � � b)

Support for MPI � � � � � c)

Pulling from Docker Hub � � � � �

No system admin intervention required � � � � �

No escalation of permissions � � d) � � �

Works with all HPC schedulers � � � � �

a) Can be realized by installing nvidia-docker runtime c) Container MPI version has to match the HPC one
b) Experimental feature d) There was a number of high severity security issues in Singularity

the necessity for administrative privileges, i.e., no need to

install additional system software. This paper describes the

usage of uDocker [9] container tool for the development of

an exemplary deep learning model for remote sensing images

pixel-wise classification. The experimental results show that

uDocker is comparable to a bare-metal installation, only en-

tailing around a 1% computation time overhead, while sim-

plifying the setup drastically.

2. BACKGROUND

The development of applications on shared multi-GPU sys-

tems is a difficult operation which requires that the system

administrators build ad-hoc environments, i.e., software mod-

ules. For instance, a simple application upgrade can demand

updating several environment modules. Furthermore, multi-

GPU applications usually require running across multiple

platforms and environments and utilize site-specific resources

while resolving complicated software-stack dependencies.

These are time-consuming tasks which add more work to the

administrators, who have to maintain the multi-user systems

and assure that the users have the tools and support to make

the most efficient use of the computing resources.

Inspired by the shipping containers in inter-modal global

transport, i.e., standardized containers that can be directly

transferred with different shipping methods without any addi-

tional preparation, software containers utilize the same strat-

egy. They are in many ways the next logical progression

from virtual machines [10]. However, containers are a type

of lightweight virtualization technology, which encapsulates

system environments into standard units of software that are:

portable, easy to build and deploy, have a small footprint,

and low runtime overhead. As researchers started embracing

containers for science, their usage within parallel computing

environments grew as well. Despite all the issues of using

containers in multi-user systems, they have been developed

to meet their needs including security, MPI compatibility and

GPU access. Since the introduction of Docker [7], the de-

velopment of technologies associated with containers raised.

Table 1 shows the most leading container technologies with

their main features.

3. UDOCKER CONTAINER

uDocker is a software technology that allows the reuse and ex-

ecution of Docker containers in user mode [9]. A container in

turn is an isolated environment mimicking an operating sys-

tem and its installed software. It is created by making use of

layering file system, where every change made to the image,

e.g., the installation of a software, adds a new layer to the im-

age. These layers can then be shared and reused or further ex-

tended to a customized versions. In contrast to traditional vir-

tualization technology, like virtual machines, containers are

often referred to as light-weight, as they do not “pull-in” the

entire operating system, but reuse the host operating system

kernel when executed. This does not only reduce the memory

footprint of such a container, but also reduces the computa-

tional performance impact.

While there is a plethora of containerization technologies

currently being developed and researched on, first and fore-

most Docker, they often have a particular usage scenario in

mind, requiring intervention of a priviliged user, e.g., admin-

istrator, for at least one step of the creation or execution of an

isolated environment. In multi-user systems, especially with

multiple GPUs used for deep-learning, the assumption about

privileges does not hold in hindsight of security issues and

direct use of containerization technology is not viable. At

the same time, the operations requiring containers to have ad-

ministrator privileges, are in most cases not needed for (scien-

tific) deep learning application like in remote sensing. There-
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fore, uDocker attempts to offer a compromise between both

worlds.

Through a second layer of virtualization technologies,

like PTRACE, UserNamespaces or libfakechroot [9],

it emulates as many container technology functions as pos-

sible in an unpriviliged userland environment. While actual

privileged operation, like access to high-ports or password

management, will obviously fail, enabling security by de-

sign, access to deep-learning essentials like GPUs is possible.

uDocker offers multiple execution modes, where each is re-

ferring to a particular realization of the secondary virtualiza-

tion technology—P uses PTRACE, F libfakechroot, R

UserNamespaces and S Singularity as engine. This alongside

numeric levels for the execution modes, e.g., P1 or P3, allow

the fine tuning of the uDocker for the particular execution

scenario.

uDocker syntax is designed to be very similar to Docker’s

interface in order to allow users to reuse documentation mate-

rial and container technology manager to transfer their knowl-

edge. At the same time, uDocker is able to reuse openly

published Docker containers, e.g., on DockerHub, enabling

a rapid development cycle, custom extension and exchange

with large community. A remote sensing scientist, who devel-

oped a new classification algorithm for example, may want to

establish it either as a generally usable service or open-source

it alongside a publication. In this scenario, the respective con-

tainer can be created directly using uDocker on his experi-

mentation device and then later shared with other scientists to

verify or build on the results.

4. EVALUATION

4.1. Experimental Setup

The experiments have been performed on the LSDF setup,

which is a single computer with all hardware available lo-

cally. Its configuration parameters are listed in Table 2. The

operating system is a RedHat Enterprise Linux 7.5, CUDA

Toolkit 9.0.176 and cudnn 7.0.5 library are installed system-

wide. We first created virtual environment and run baremetal

tests by means of Keras 2.2.2, TensorFlow 1.8.0 (GPU), and

the neural network code1 described in the next section. Ver-

sions of all relevant Python packages were fixed with pip

freeze, so that exactly same versions are used in all the

tests, including created docker image2. Note, that the utilized

Python versions are slightly different in case of baremetal and

the docker image: 2.7.5 and 2.7.12 respectively. uDocker is

executed in ’F3’ mode (Fakechroot) with ’--nvidia’ flag

specified, devel branch of uDocker from GitHub is used.

1Source code: https://github.com/vykozlov/semseg-bids19
2https://hub.docker.com/r/vykozlov/semseg/, tag ’bids19-gpu’

Table 2. LSDF setup used in the experiments.

CPU RAM Nvidia GPU

(driver version)

2× Intel Xeon 128 GB 4×K80,

E5-2630 v3 12 GB (396.26)

4.2. Dataset and Deep Learning Model

The Vaihingen dataset [11] includes 33 orthorectified image

tiles acquired by an aerial camera (i.e., infrared, green and

red bands) over the town of Vaihingen (Germany) 3. Since

this dataset was released as a benchmark for a 2D semantic

labeling contest, only 16 out of the 33 tiles are annotated (i.e.,

at pixel level with a spatial resolution of 9 cm). For the ex-

periments, the annotated tiles that are used for the training

and validation have ID= 1,3,5,7,11,13,17,21,26,28,34,37 and

ID= 30,32, respectively. The semantic segmentation task in-

volves the discrimination of 6 land-cover classes: impervious

surfaces (i.e., roads, concrete surfaces), buildings, low vege-

tation, trees, cars and a class of clutter representing uncate-

gorizable land covers (i.e., excluded in the prediction). The

training data was randomly augmented using 90 degree rota-

tions and horizontal and vertical flips.

The deep learning model is a 50-layer Residual Network

(ResNet) [12] that was adapted into a Fully Convolutional

Network (FCN) with connections from the last 3232, 1616,

and 88 layers of the ResNet: ResNet50 FCN 4.

The model was trained using a random initialization for

20 epochs with 4166 samples per epoch (2083 original im-

ages and 2083 augmented) with a batch size of 16 using the

Adam optimizer with Keras default settings (e.g., a learning

rate of 0.001). The network takes 256×256 windows of data

as input. To generate predictions for larger images, we made

predictions over a sliding window (with 50% overlapping of

windows) and stitched the resulting predictions together.

4.3. Results

The code allows to use more than one GPU for training by

means of Keras’ multi gpu model function, we therefore

perform training on one, two, and four GPUs for every case.

Each experiment is run three times under the same conditions

in baremetal installation and via uDocker . In order to com-

pare our results we used mean value and estimated standard

error for the sample calculated based on the three runs. Ev-

ery run consists of 20 epochs of training. Results for the to-

tal training time are shown in Table 3. As one can see, in

3http://www2.isprs.org/commissions/comm3/wg4/semantic-

labeling.html
4https://www.azavea.com/blog/2017/05/30/deep-learning-on-aerial-

imagery/
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either case we see no statistically significant difference be-

tween baremetal and uDocker modes of running. There is

also a clear performance improve in processing time when us-

ing four over one GPU (the higher variance is due to the data

parallelization). The scaling with number of GPUs is how-

ever imperfect. This can be attributed to the communication

overhead of the way Keras synchronizes weight gradients be-

tween multiple GPUs in the training’s backpropagation step.

Table 3. Total training time of the neural network. Each result

is an average of three runs with its standard error. Every run

takes 20 epochs of training on either one, two, or four GPUs.

Number of Training time, s

GPUs baremetal uDocker

1 3710 ± 10 3730 ± 10

2 2390 ± 30 2360 ± 16

4 1860 ± 40 1880 ± 10

We note here, that uDocker also allows to pass envi-

ronment settings at container instantiation phase, therefore

one can e.g., specify which GPU card to use by setting

CUDA VISIBLE DEVICES environment.

5. CONCLUSIONS

This paper describes the usage of the uDocker container tool

within a multi-GPU system for the development of a deep

learning classification task. uDocker allow to run the classi-

fier in a Docker container without using Docker, root privi-

leges and additional system software. It is run as a normal

user without the intervention of the system administrators.

The paper shows that researchers can adopt uDocker to facil-

itate the deployment of new analytical models and workflows

on multi-user systems and enable scientific reproducibility.

Furthermore, the experimental results demonstrated that the

overhead introduced by the container is negligible when com-

pared to an uncontainerized environment.
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