000861313 001__ 861313
000861313 005__ 20240625095116.0
000861313 0247_ $$2doi$$a10.1021/acs.jctc.9b00040
000861313 0247_ $$2ISSN$$a1549-9618
000861313 0247_ $$2ISSN$$a1549-9626
000861313 0247_ $$2Handle$$a2128/21824
000861313 0247_ $$2pmid$$apmid:30763087
000861313 0247_ $$2WOS$$aWOS:000461533000052
000861313 0247_ $$2altmetric$$aaltmetric:55856231
000861313 037__ $$aFZJ-2019-01806
000861313 082__ $$a610
000861313 1001_ $$0P:(DE-Juel1)176580$$aTarenzi, Thomas$$b0$$ufzj
000861313 245__ $$aOpen-Boundary Molecular Mechanics/Coarse-Grained Framework for Simulations of Low-Resolution G-Protein-Coupled Receptor–Ligand Complexes
000861313 260__ $$aWashington, DC$$c2019
000861313 3367_ $$2DRIVER$$aarticle
000861313 3367_ $$2DataCite$$aOutput Types/Journal article
000861313 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552412673_13869
000861313 3367_ $$2BibTeX$$aARTICLE
000861313 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861313 3367_ $$00$$2EndNote$$aJournal Article
000861313 520__ $$aG-protein-coupled receptors (GPCRs) constitute as much as 30% of the overall proteins targeted by FDA-approved drugs. However, paucity of structural experimental information and low sequence identity between members of the family impair the reliability of traditional docking approaches and atomistic molecular dynamics simulations for in silico pharmacological applications. We present here a dual-resolution approach tailored for such low-resolution models. It couples a hybrid molecular mechanics/coarse-grained (MM/CG) scheme, previously developed by us for GPCR–ligand complexes, with a Hamiltonian-based adaptive resolution scheme (H-AdResS) for the solvent. This dual-resolution approach removes potentially inaccurate atomistic details from the model while building a rigorous statistical ensemble—the grand canonical one—in the high-resolution region. We validate the method on a well-studied GPCR–ligand complex, for which the 3D structure is known, against atomistic simulations. This implementation paves the way for future accurate in silico studies of low-resolution ligand/GPCRs models.
000861313 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000861313 588__ $$aDataset connected to CrossRef
000861313 7001_ $$0P:(DE-Juel1)166168$$aCalandrini, Vania$$b1$$eCorresponding author$$ufzj
000861313 7001_ $$00000-0001-6408-9380$$aPotestio, Raffaello$$b2$$eCorresponding author
000861313 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b3
000861313 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.9b00040$$gp. acs.jctc.9b00040$$n3$$p2101–2109$$tJournal of chemical theory and computation$$v15$$x1549-9626$$y2019
000861313 8564_ $$uhttps://juser.fz-juelich.de/record/861313/files/Invoice.pdf
000861313 8564_ $$uhttps://juser.fz-juelich.de/record/861313/files/Invoice.pdf?subformat=pdfa$$xpdfa
000861313 8564_ $$uhttps://juser.fz-juelich.de/record/861313/files/acs.jctc.9b00040-2.pdf$$yOpenAccess
000861313 8564_ $$uhttps://juser.fz-juelich.de/record/861313/files/acs.jctc.9b00040-2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861313 8767_ $$8APC600029312$$92019-03-08$$d2019-03-11$$eHybrid-OA$$jZahlung erfolgt
000861313 909CO $$ooai:juser.fz-juelich.de:861313$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000861313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176580$$aForschungszentrum Jülich$$b0$$kFZJ
000861313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166168$$aForschungszentrum Jülich$$b1$$kFZJ
000861313 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b3$$kFZJ
000861313 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000861313 9141_ $$y2019
000861313 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861313 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2017
000861313 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2017
000861313 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861313 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861313 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861313 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861313 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861313 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861313 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861313 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861313 920__ $$lyes
000861313 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000861313 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000861313 980__ $$ajournal
000861313 980__ $$aVDB
000861313 980__ $$aUNRESTRICTED
000861313 980__ $$aI:(DE-Juel1)IAS-5-20120330
000861313 980__ $$aI:(DE-Juel1)INM-9-20140121
000861313 980__ $$aAPC
000861313 9801_ $$aAPC
000861313 9801_ $$aFullTexts