001     861352
005     20240625095117.0
024 7 _ |a 10.1039/C0CP01084G
|2 doi
024 7 _ |a 1463-9076
|2 ISSN
024 7 _ |a 1463-9084
|2 ISSN
024 7 _ |a pmid:21082116
|2 pmid
024 7 _ |a WOS:000285750100048
|2 WOS
037 _ _ |a FZJ-2019-01834
082 _ _ |a 540
100 1 _ |a Geinguenaud, Frédéric
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Conformational transition of DNA bound to Hfq probed by infrared spectroscopy
260 _ _ |a Cambridge
|c 2011
|b RSC Publ.66479
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552461739_13873
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hfq is a bacterial protein involved in RNA metabolism. Besides this, Hfq's role in DNA restructuring has also been suggested. Since this mechanism remains unclear, we examined the DNA conformation upon Hfq binding by combining vibrational spectroscopy and neutron scattering. Our analysis reveals that Hfq, which preferentially interacts with deoxyadenosine rich sequences, induces partial opening of dA–dT sequences accompanied by sugar repuckering of the dA strand and hence results in a heteronomous A/B duplex. Sugar repuckering is probably correlated with a global dehydration of the complex. By taking into account Hfq's preferential binding to A-tracts, which are commonly found in promoters, potential biological implications of Hfq binding to DNA are discussed.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Calandrini, Vania
|0 P:(DE-Juel1)166168
|b 1
|u fzj
700 1 _ |a Teixeira, José
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mayer, Claudine
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Liquier, Jean
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Lavelle, Christophe
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Arluison, Véronique
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1039/C0CP01084G
|g Vol. 13, no. 3, p. 1222 - 1229
|0 PERI:(DE-600)1476244-4
|n 3
|p 1222 - 1229
|t Physical chemistry, chemical physics
|v 13
|y 2011
|x 1463-9084
856 4 _ |u https://juser.fz-juelich.de/record/861352/files/c0cp01084g.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/861352/files/c0cp01084g.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:861352
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166168
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS CHEM CHEM PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21