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We propose a fractional Brownian dynamics model for time correlation functions characterizing the
internal dynamics of proteins probed by NMR relaxation spectroscopy. The time correlation
functions are represented by a broad distribution of exponential functions which are characterized
by two parameters. We show that the model describes well the restricted rotational motion of N–H
vectors in the amide groups of lysozyme obtained from molecular dynamics simulation and that
reliable predictions of experimental relaxation rates can be obtained on that basis. © 2010 American
Institute of Physics. �doi:10.1063/1.3486195�

I. INTRODUCTION

NMR relaxation spectroscopy has proven to be a unique
approach for a site-specific investigation of both global tum-
bling and internal motions of proteins. The molecular mo-
tions modulate the magnetic interactions between the nuclear
spins and lead for each nuclear spin to a relaxation behavior
which reflects its environment. Since its first applications to
the study of protein dynamics, a variety of techniques has
been proposed for the investigation of both backbone and
side chain dynamics. Among them, relaxation measurements
of backbone amide 15N nuclei, which are routinely studied
by NMR, are most widespread.

The relationship between microscopic motions and spin
relaxation rates is provided by Redfield’s theory.1 In the case
of backbone amide 15N, relaxation primarily occurs through
fluctuations of the 15N– 1H-dipole-dipole interactions with
the directly bonded amide proton and of the 15N chemical
shift anisotropy tensor, which is commonly assumed to be
axially symmetric with its axis parallel to the NH bond �for a
general reference, see Ref. 2�. The relaxation rates of the 15N
nuclei are determined by time correlation functions �TCFs�
of the form

Cii�t� = �P2��i�t� · �i�0��� , �1�

where �i�t� is a unit vector pointing along the NH bond of
residue i and P2� . � is the second order Legendre polynomial.
Longitudinal and transverse 15N relaxation rates �R1i and
R2i�, and 15N�1H	 heteronuclear Overhauser enhancement
��NHi� are expressed as linear combinations of the spectral
density functions Jii���, the Fourier transforms of the Cii�t�,
which are evaluated at the Larmor frequencies 0, �H, �N,
and �H�N
�H��N

�NHi = 1 +
�H

�N

d2

R1
�6Jii��H+N� − Jii��H−N�� , �2a�

R1i = d2�3Jii��N� + Jii��H−N� + 6Jii��H+N�� + 2c2Jii��N� ,

�2b�

R2i = d2�2Jii�0� +
3

2
Jii��N� +

1

2
Jii��H−N� + 3Jii��H�

+ 3Jii��H+N�� + c2�4

3
Jii�0� + Jii��N�� . �2c�

Here d=�0��H�N /4
10��rNH
3 � and c=�NB0	
N /
15. The

parameters �H and �N are the gyromagnetic ratios of 15N and
1H atoms, respectively, �0 is the vacuum magnetic suscepti-
bility, � is the reduced Planck constant, and 	
N is the 15N
chemical shift anisotropy. The NH distance is considered
constant and is fixed to its average value �rNH�.

The Redfield equations show that relaxation measure-
ments probe the relaxation dynamics of a selected nuclear
spin at only five selected frequencies. It is therefore not pos-
sible in practice to obtain a detailed picture about the internal
and global dynamics of proteins by a numerical reconstruc-
tion of Jii��� from NMR data. In the model-free �MF� ap-
proach by Lipari and Szabo3 the assumption is made that the
internal reorientational correlation function decays exponen-
tially. Various studies of protein dynamics, spanning time
scales from picoseconds to hours4–10 give, however, evidence
that internal protein dynamics is characterized by strongly
nonexponential TCFs which may be described by non-
Markovian stochastic models, such as fractional Brownian
dynamics �fBD� and the continuous time random walk
�CTRW�.11 The TCFs resulting from such models are char-
acterized by a superposition of exponential functions, with a
broad spectrum of decay rates. In the context of NMR spec-
troscopy we have recently shown12 that these relaxation
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spectra are compatible with those found from elastic network
models for the interpretation of NMR relaxation data.13,14

In this article we demonstrate that fBD is also a good
basis to describe the rotational diffusion of NH bond vectors
resulting from the internal dynamics of proteins seen in mo-
lecular dynamics �MD� simulations, and that reliable estima-
tions for experimental NMR relaxation rates can be obtained
on that basis. The physical motivation is discussed and an
illustrative example is presented for the case of lysozyme,
where the predicted NMR relaxation rates obtained from fits
of the corresponding MD correlation functions are compared
to experimental.15

II. MD SIMULATION

A. Simulation protocol

The simulated system consists of one hen egg white
lysozyme molecule and 6775 water molecules. As starting
configuration of the protein we used the crystallographic
structure corresponding to entry 193L of the Brookhaven
Protein Data Bank.16 The hydrogen atoms of the protein
were added according to standard criteria for the chemical
bond structure of amino acids, leading to a system of 22295
atoms in total. The simulation has been performed with the
program package NAMD,17 using the AMBER99SB �Ref. 18�
and Simple Point Charge-Extended �SPC/E� �Ref. 19� force
fields for the protein and the water molecules, respectively.
To mimic a macroscopic system, periodic boundary condi-
tions have been applied and electrostatic interactions have
been computed using the particle mesh Ewald method,20

with a cutoff of 12 Å. The integration time step was set to 1
fs and atomic configurations were recorded with a sampling
time step of 50 fs over 10 ns in total. The simulation has
been carried out at ambient conditions, using a Langevin
thermostat21 and a Nose–Hoover barostat.22 In order to ex-
tract a trajectory describing only the internal dynamics of the
simulated lysozyme molecule, global translations and rota-
tions of the protein molecule have been filtered out by per-
forming for each sampling time step a rigid body fit of its
actual conformation to its initial conformation in the
trajectory.23,24

B. Calculation of rotational correlation functions

Assuming that the overall tumbling motion is isotropic
and statistically uncorrelated with the internal motions, the
total correlation function can be factorized as

Cii�t� = CG�t�Cii
I �t� , �3�

where CG�t� and Cii
I �t� are the global and internal correlation

function, respectively.3 This factorization does not require
the internal correlation function to relax much faster than the
global one.25 Such an assumption would be incompatible
with fBD, which implies the presence of arbitrarily long time
relaxation times. It is sufficient to assume that the global and
internal motions are statistically independent �for a recent
and detailed discussion, see Ref. 26�. To compute the internal
TCFs from the simulated trajectory we used the representa-
tion

Cii
I �t� =

4�

5 �
m=−2

2

�− 1�m�Y2
−m��i�0��Y2

m��i�t��� , �4�

which allows for an efficient calculation by fast Fourier
transform techniques.27 Here, �i denotes the polar angles
defining the instantaneous orientation of the ith NH vector in
the molecular reference frame, and Y2

m� · � is the second rank
spherical harmonic.28 The asymptotic values were computed
through

Si
2 = lim

t→�
Cii

I �t� =
4�

5 �
m=−2

2

��Y2
m��i���2. �5�

III. THEORY

A. Model for internal correlation functions

In absence of detailed information on the rotational dif-
fusion of NH vectors, it is natural to assume an exponential
decay of the corresponding autocorrelation function. As
mentioned above, this approach is used in the MF analysis of
Lipari and Szabo.3 It implies in particular the assumption of
one dominant relaxation process, with an associated relax-
ation rate. It will be shown later that the TCFs relevant to
NMR relaxation display, however, a strongly nonexponential
form—in agreement with the observations from other spec-
troscopic experiments cited above. To account for multiple
relaxation processes with a broad spectrum of relaxation
rates, we assume the following model for the internal TCFs:

Cii
I �t� = Si

2 + �1 − Si
2�E
i

�− �t/�i�
i� . �6�

Here E
� · � is the Mittag–Leffler �ML� function

E
�z� = �
k=0

�
zk

��1 + 
k�
�7�

which is an entire function in the domain of complex
numbers29 and the parameter 
 is in general complex. The
asymptotic value Si

2=Cii
I ��� is the so-called generalized or-

der parameter3 which indicates the degree of spatial restric-
tion of the internal motions of a bond vector, and the param-
eter �i sets the time scale of the internal relaxation processes.

The function E
�−�t /��
� in Eq. �6� can be viewed as a
generalization of a stretched exponential function with 
 and
� being the shape and scale parameters, respectively. For

=1 the stretched ML function reduces to an exponential
function, whereas it exhibits a power law decay at large
times for 0�
�1, E
�−�t /��
�� �t /��−
, and an infinitely
steep decay at t=0. The MF approach of Lipari and Szabo
thus appears as a special case of Eq. �6�, by setting 
=1. The
deviation of the stretched ML function from the exponential
law can be described in terms of a distribution function
p
,���� for the relaxation rates �

E
�− �t/��
� = �
0

�

d�p
,����exp�− �t� . �8�

The relaxation spectrum is positive and has the form4,7
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p
,���� =
�

�

����
−1sin��
�
����2
 + 2����
cos��
� + 1

, �9�

where 0�
�1. It verifies the normalization condition
�0

�d�p
,����=1 and for 
=1 it reduces to a Dirac distribution
centered at �=�−1. The inverse of the scaling parameter �
gives the median of p
,����.9 For 0�
�1 the stretched ML
function exhibits self-similarity on the time scale and is the
solution of a fractional differential equation.4,30 We thus pro-
pose a self-similar, fractional extension of the MF approach.
The interpretation in terms of a dynamical model represents
a further step in the analysis, on which we comment below.

B. Physical interpretation

Correlation functions of the form E
�−�t /��
� arise in
the context of a certain class of so-called anomalous diffu-
sion processes, which are observed in a variety of complex
systems.31 In case of one-dimensional free diffusion, the
anomaly refers to a sublinear evolution of the mean-square
displacement in time, ��x�t�−x�0��2�=2D
t
�0�
�1�,
where D
 is the fractional diffusion constant. The spatial
restriction of atomic motions in proteins can be accounted
for by the Ornstein–Uhlenbeck �OU� process,32–35 which de-
scribes the diffusion of a particle in a harmonic potential. In
the context of protein dynamics the harmonic potential must
be viewed as an effective potential, describing the “softness”
or “resilience” of a protein.36 The standard OU process leads,
however, to an exponentially decaying autocorrelation func-
tion for the dynamical variable, in contrast to what is ob-
served in the experiments and simulations. These observa-
tions can be accounted for by using instead the fractional OU
�fOU� process to describe intramolecular motions,11 which
exhibits non-Markovian long time memory effects.6,37 Alter-
natively, the latter can be thought of as a CTRW on a “rug-
ged” parabolic energy surface, with a broad distribution of
the waiting times between successive displacements.11 This
approach has been used in the various experimental and
simulation studies of internal protein dynamics mentioned
above, considering as dynamical variables atomic position
fluctuations,7–10 fluctuations of position differences,5 and
Fourier-transformed particle densities.6 A relation between
fractional Brownian dynamics and rugged potential energy
surfaces can be established by mapping the average waiting
times or relaxation rates onto barrier heights separating the
various conformational “substates” in the protein potential
energy surface.4,38 In this kinetic description of protein dy-
namics one can think of a “fractal” potential energy
surface,39 which corresponds to “fractional” Brownian dy-
namics.

In the simplest case of a one-dimensional �1D� random
diffusion process, the probability density associated with the
fOU process is the solution of a fractional Fokker–Planck
equation

�P�x,t�x0,0�
�t

= �̃1−

0Dt

1−
LP�x,t�x0,0� , �10�

where L is the usual Fokker–Planck operator acting on the
relevant dynamical variable x. For simplicity we consider for

the moment a 1D stochastic process. The symbol 0Dt
1−
 de-

fines a fractional derivative of order 1−
, which is defined
through40

0Dt
1−
f�t� =

d

dt
�

0

t

d�
�t − ��
−1

��
�
f��� , 0 � 
 � 1, �11�

where �� · � is the generalized factorial.28 The factor �̃1−
,
where �̃ has the dimension of time, ensures the correct di-
mension of the right-hand side of Eq. �10�. In the case of an
fOU process L is of Smoluchowski type

L = D
�

�x
� 1

kBT

�V�x�
�x

+
�

�x
� , �12�

where D is the diffusion constant of free diffusion,

V�x� = Kx2/2 �13�

is the potential in which the particle moves, and kB and T
denote, respectively, the Boltzmann constant and the abso-
lute temperature.

Since L has a discrete spectrum of eigenvalues, the so-
lution of Eq. �10� can be developed in terms of its left and
right eigenfunctions, following exactly the same procedure
as for the normal OU process.33,35 In terms of the dimension-
less variable �=x /
x2, where

�x2� =
kBT

K
�14�

is the mean square position fluctuation, one finds the follow-
ing form for the transition probability density:11

P��,t��0,0� =

exp�−
�2

2
�


2�
�
n=0

�
1

2nn!
Hn� �


2
�Hn� �0


2
�

�E
�− n�
t
� . �15�

The functions Hn are Hermite polynomials28 and �
 is the
fractional relaxation rate

�
 =
D�̃1−


�x2�
. �16�

The knowledge of the transition probability density P per-
mits to calculate TCFs which can be measured in spectro-
scopic experiments. The autocorrelation function of x for the
fOU process reads in particular

cxx�t� ª �x�t�x�0�� = �x2�E
�− �
t
� . �17�

The “anomalous,” nonexponential behavior of the autocorre-
lation function can be related to memory effects, which are
introduced through the fractional derivative in Eq. �10�. Us-
ing the theory of the generalized Langevin equation,41,42 one
can formally assign a memory function to any TCF whose
dynamics is governed by the laws of classical or quantum
many-body dynamics. Within this framework we have
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�tcxx�t� = − �
0

�

d���t − ��cxx��� , �18�

where �� . � is the memory function which can be rigorously
expressed in terms of the dynamical variables describing the
microscopic dynamics. A simple interpretation in terms of a
physical model is, however, difficult. For a correlation func-
tion of the form �17�, the memory function can be derived by
Laplace transform and one finds a power law behavior6

�fOU�t� =

 − 1

��
��2� t

�
�
−2

, t � 0, 0 � 
 � 1, �19�

where �0
�dt�fOU�t�=0.

The fOU process may be used as a heuristic model to
interpret NMR relaxation data, i.e., rotational diffusion of
bond vectors, if one assumes that the latter fluctuate only
moderately about their average direction in a molecular-fixed
frame. In this case, the dynamical variables in the diffusion
process are the Cartesian coordinates x and y of the bond
vector in the plane perpendicular to the average
direction.12,14 Assuming an axially symmetric potential for
the corresponding motion

V�x,y� =
K

2
�x2 + y2� �20�

the diffusion will be isotropic with respect to x and y and the
parameters of the model are the same as in the 1D case. The
position correlation function keeps in particular the form
�17�. Using the fact that the order parameters can be ex-
pressed as Si

2=1–3�xi
2+yi

2� within the above
approximation,13,14 and that �xi

2+yi
2�=2kBT /Ki, it follows

that

Si
2 = 1 −

6kBT

Ki
. �21�

The order parameter is thus related to the elasticity or soft-
ness of the protein at the position of residue i. Since the
rotational TCFs can be described by a fOU process, we refer
to our model with the label “fOU.”

IV. RESULTS

A. Comparing model and MD data

The analysis of the internal autocorrelation functions
Cii

I �t� obtained from MD simulation was performed as fol-
lows:

�1� The decay from t=0 to t=1 ps is considered instanta-
neous and a correspondingly modified version of model
�6� is fitted to the simulated TCFs in the time interval
1 ps� t�1000 ps

Cii
I �t� = Si

2 + �Si,f
2 − Si

2�E
i
�− �t/�i�
i� . �22�

For comparison the simulated TCFs have been fitted in
the same time interval using the extended MF
approach43

Cii
I �t� = Si

2 + �Si,f
2 − Si

2�exp�− t/�MF,i� . �23�

In both models Si,f
2 =Cii,MD

I �1 ps� are to be considered
as given order parameters for the fast motions, which
are not explicitly accounted for, and 
i, �i, and �MF,i are
adjustable parameters. The values for Si

2 are either ex-
tracted from the MD simulation or are considered as
adjustable parameters as well.

�2� Model �6� is fitted to the simulated TCFs over the
whole time scale 0 ns� t�1 ns, describing an aver-
age decay in the oscillatory initial regime between 0
and 1 ps. Again, Si

2 is either taken from MD simulation
or treated as an adjustable parameter, together with 
i

and �i.

Figure 1 shows the internal correlation functions for a
few selected residues �dots�, together with the fits of models
�22� and �23� for 1 ps� t�1000 ps, treating Si

2 as a fit pa-
rameter �solid lines�. In the upper right insets we show the
fast initial decay of the simulated TCFs. The log-log plot
clearly displays systematic deviations of the TCFs from an
exponential form, which is quantified by the 
 parameter in
the fOU model and by the corresponding distribution of re-
laxation rates given in the lower left insets. The MF ap-
proach could be in principle improved by introducing a fur-
ther exponential component, but the MD correlation
functions do not specifically suggest the existence of two or
more well separated relaxation processes. Figure 2 demon-
strates that model �6� is able to account even reasonably well
for the steep initial decay of the simulated TCFs for very
short time lags �0 ps� t�1 ps�, leaving out the oscillations
the model cannot account for by construction. As for the fits
displayed in Fig. 1, Si

2 was treated as an adjustable param-
eter.

Figures 3 and 4 show the fitted parameters resulting
from the fOU models �6� and �22�, where Si

2 is either an
adjustable or a fixed parameter obtained from MD simula-
tion. For comparison we also present the results obtained
with the MF approach �23�. In the latter case the fit of the
TCFs has been carried out only for the reduced time window
1 ps� t�1000 ps. The results show that passing from the
full to the reduced time window leads to values of 
 closer to
one—expressing a more exponential character of the TCFs—
and an increase of the time scale parameters by approxi-
mately two orders of magnitude which thus become closer to
those obtained from the MF approach. The deviation of the
TCFs from an exponential is nevertheless still substantial in
almost the whole protein backbone.

B. Predicting NMR relaxation rates from simulation

So far we have demonstrated that expressions �6� and
�22� fit well the rotational correlation functions of the NH
vectors obtained by MD simulations and we have also shown
that it can be related to a physical model, as well as to the
concept of memory functions. In order to further exploit the
capabilities of our model, we applied it to the calculation of
NMR relaxation rates from an MD simulation of lysozyme in
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solution and compared the results with experimental data.15

Using Eq. �6� and the factorization Cii�t�=CG�t� ·Cii
I �t�,

where

CG�t� = exp�− t/�0� �24�

and �0 is the characteristic time scale for the global rotation,
it is possible to derive an analytical expression for the spec-
tral densities.9 To accommodate both versions �6� and �22� of
the fOU model and the MF approach �23� �set 
i=1 in this
case�, we write

Jii��� =
Si

2�0

1 + ���0�2 + �Si,f
2 − Si

2�

�
1

�

���i�
i cos � + cos���1 − 
i��
���i�
i + ���i�−
i + 2 cos �
i

, �25�

where cos �= ��0��−1, sin �=� /�, �= ��0
−2+�2�1/2, and Si,f

=1 for the original model �6�. For �0 we used the value
previously determined from NMR relaxation
measurements.15

To compute NMR relaxation rates from the MD simula-
tion we used both variants �6� and �22� of the fOU model as
well as the MF approach �23�, in the respective time inter-
vals, where Si

2 were either treated as a fit parameters or fixed
to the respective values computed from the MD trajectory.
The results are shown in Figs. 5 and 6. Inspection of �NH, R1,
and R2 as a function of the residue number shows that our
approach yields overall satisfactory agreement with experi-
mental data for both fitting methods used. Both estimations
give very similar results for R1 and R2 �top and middle pan-
els of Figs. 5 and 6�, although the estimates for �NH show
somewhat larger differences in some regions of the protein.
Only minor differences are observed for the �NH rates of
residues 100–105 if Si

2 fixed to the values obtained from MD
simulation, for which the fOU model seems to give a better
estimation than the MF approach. To have a better apprecia-
tion of the prediction capability of fOU model with respect
to MF it would be interesting to increase the number of
observables, for example by changing the strength of the
magnetic field and thus the Larmor frequencies. Neverthe-
less, the most important point to keep in mind here is that the
fOU model is able to reproduce the experimental data with
an accuracy similar to the one provided by the MF approach.

FIG. 1. Internal correlation functions Cii
I �t� for selected residues �Val 2, Gly 26, Asn 74, Ala122� computed from MD simulation �dots� together with the fits

of model �22� �solid line� and the fit of the corresponding MF representation �23� �short dashes�. Both fits are performed for time lags from 1 to 1000 ps.
Within each panel the top-right inset shows a zoom on the first few picoseconds of the TCF and the bottom-left inset shows the distribution of relaxation rates
according to Eq. �9�.
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In addition, our model offers a more realistic picture of in-
ternal protein dynamics by introducing a distribution of re-
laxation times/rates. Indeed, the good agreement between the
correlation functions computed from MD simulation and
their representations by stretched ML functions in the time
interval 0 ps� t�1000 ps, on one hand, and the agreement
between back-calculated and experimentally measured relax-
ation rates, on the other hand, suggests that our model is able
to account for the multiscale character of internal protein
dynamics. Interestingly, it does so without introducing an
arbitrary separation between very fast �subpicosecond� and
slower �picosecond-nanosecond� motions, and with no need
for an additional parameter accounting for the plateau value
of the faster decay. We remark that the prediction of relax-
ation rates based on a MF approach with two exponential
functions does not improve the agreement with the experi-
mental results �data not shown�.

As a final point we discuss the relation between the cor-
relation time �MF,i of MF correlation function and the corre-
lation time �i of fOU model. At low frequencies, ��1 /�0,
the spectral densities are dominated by the overall tumbling
of the protein. Therefore the two approximate spectral den-
sity functions should obey the condition Jii

MF�0��Jii
fOU�0�.

Equating both values and using that

Jii
fOU�0� = Si

2�0 + �Si,f
2 − Si

2�
�i� �i

�0
�
i−1

1 + � �i

�0
�
i

, �26�

Jii
MF�0� = Si

2�0 + �Si,f
2 − Si

2�
�MF,i

1 +
�MF,i

�0

�27�

one obtains a relationship between the MF relaxation time
�MF,i and the scaling and shape parameters �i and 
i of the
fOU model

�MF,i = �i��i/�0�
i−1, 0 � 
i � 1. �28�

Inserting the fitted parameters 
i and �i in the above expres-
sion, we obtain values for �MF,i in the range between 50 and
1000 ps, which are of the same order as those found by Buck
et al.15 using the MF approach. We remark that �MF,i is the
time scale for the internal dynamics of the respective NH
vector in the MF approach, whereas the �i is the inverse of
the median of distribution of relaxation rates.9 Only for an
exponential function the two definitions coincide.

FIG. 2. The simulated internal correlation functions Cii
I �t� selected in Fig. 1 �dots� together with the fits of model �6� for 0 ps� t�1000 ps �solid line�. The

upper right inset in each panel shows here a zoom onto the first few picoseconds of the respective TCF �dots� together the fit of model �6� �solid lines� and
the bottom-left inset the corresponding distributions of relaxation rates according to Eq. �9�.
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V. CONCLUSIONS

Our results show that the model of fractional Brownian
dynamics in a harmonic potential affords a practical way of
modeling the internal time autocorrelation functions relevant
to NMR relaxation. This approach accounts for the existence
of a continuous spectrum of time scales in the internal

dynamics of proteins, keeping the number of model param-
eters at a strict minimum. The fOU model provides estima-
tions of the relaxation rates �NH, R1, and R2 which are of
similar quality as those obtained from the �extended� MF
approach, yielding at the same time a better representation of
the relevant reorientational TCFs, even if the steep decay for
short times is considered. It is in particular a clear alternative

FIG. 3. The fit parameters 
i, �i, and
Si

2 corresponding to models �6� �filled
circles� and �22� �open circles�, to-
gether with the fit parameters �i and Si

2

corresponding to the MF approach
�gray line�. The parameters are shown
as a function of the residue number, i.
The fits of model �6� have been per-
formed for 0 ps� t�1000 ps and
those of model �22� and the MF ex-
pression �23� for 1 ps� t�1000 ps.
In the bottom panel we show for com-
parison the values for Si

2 obtained
from MD simulation �short dashed
line�. The light gray and dark gray
stripes indicate 
-helices and �-sheets,
respectively.

FIG. 4. As Fig. 3, but with Si
2 taken

from MD simulation.
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to accounting for the nonexponential form of the TCFs by
increasing the number of exponential components in the MF
approach, since this method would not only require the in-
troduction of two additional adjustable parameters per expo-
nential function, but would rapidly also lead to an unstable
fitting procedure. Here the fOU model offers an affordable

way of capturing multiscale relaxation processes in protein
dynamics through a distribution of relaxation rates which can
be described by only two parameters. Work on the direct
application to simulation data and on applications with an
anisotropic extension of the harmonic potential �20� is in
progress.

FIG. 5. Estimation of R1, R2, and �NH from MD simulation using the parameters obtained from the fits based on the fOU models �6� and �22� and on the MF
approach �23�. Here Si

2 are considered as fit parameters.

FIG. 6. As for Fig. 5, but with Si
2 taken from MD simulation.
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