000861357 001__ 861357
000861357 005__ 20210130000807.0
000861357 0247_ $$2doi$$a10.1016/j.bbapap.2009.05.007
000861357 0247_ $$2ISSN$$a1570-9639
000861357 0247_ $$2ISSN$$a1878-1454
000861357 0247_ $$2pmid$$apmid:19540369
000861357 0247_ $$2WOS$$aWOS:000272765200009
000861357 037__ $$aFZJ-2019-01839
000861357 082__ $$a570
000861357 1001_ $$0P:(DE-HGF)0$$aKneller, G. R.$$b0$$eCorresponding author
000861357 245__ $$aSelf-similar dynamics of proteins under hydrostatic pressure—Computer simulations and experiments
000861357 260__ $$aAmsterdam [u.a.]$$c2010
000861357 3367_ $$2DRIVER$$aarticle
000861357 3367_ $$2DataCite$$aOutput Types/Journal article
000861357 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553880636_25990
000861357 3367_ $$2BibTeX$$aARTICLE
000861357 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861357 3367_ $$00$$2EndNote$$aJournal Article
000861357 520__ $$aDifferent experimental techniques, such as kinetic studies of ligand binding and fluorescence correlation spectroscopy, have revealed that the diffusive, internal dynamics of proteins exhibits autosimilarity on the time scale from microseconds to hours. Computer simulations have demonstrated that this type of dynamics is already established on the much shorter nanosecond time scale, which is also covered by quasielastic neutron scattering experiments. The autosimilarity of protein dynamics is reflected in long-time memory effects in the underlying diffusion processes, which lead to a non-exponential decay of the observed time correlation functions. Fractional Brownian dynamics is an empirical model which is able to capture the essential aspects of internal protein dynamics. Here we give a brief introduction into the theory and show how the model can be used to interpret neutron scattering experiments and molecular dynamics simulation of proteins in solution under hydrostatic pressure
000861357 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000861357 588__ $$aDataset connected to CrossRef
000861357 7001_ $$0P:(DE-Juel1)166168$$aCalandrini, V.$$b1$$ufzj
000861357 773__ $$0PERI:(DE-600)2209540-8$$a10.1016/j.bbapap.2009.05.007$$gVol. 1804, no. 1, p. 56 - 62$$n1$$p56 - 62$$tBiochimica et biophysica acta / Proteins and proteomics Proteins and proteomics [...]$$v1804$$x1570-9639$$y2010
000861357 909CO $$ooai:juser.fz-juelich.de:861357$$pVDB
000861357 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166168$$aForschungszentrum Jülich$$b1$$kFZJ
000861357 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000861357 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861357 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBBA-PROTEINS PROTEOM : 2017
000861357 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861357 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861357 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861357 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861357 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861357 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861357 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861357 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000861357 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861357 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861357 920__ $$lno
000861357 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000861357 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000861357 980__ $$ajournal
000861357 980__ $$aVDB
000861357 980__ $$aI:(DE-Juel1)IAS-5-20120330
000861357 980__ $$aI:(DE-Juel1)INM-9-20140121
000861357 980__ $$aUNRESTRICTED