000861430 001__ 861430
000861430 005__ 20230127125335.0
000861430 0247_ $$2doi$$a10.5194/gmd-12-955-2019
000861430 0247_ $$2ISSN$$a1991-959X
000861430 0247_ $$2ISSN$$a1991-9603
000861430 0247_ $$2Handle$$a2128/21852
000861430 0247_ $$2WOS$$aWOS:000461042700001
000861430 0247_ $$2altmetric$$aaltmetric:57165504
000861430 037__ $$aFZJ-2019-01905
000861430 082__ $$a550
000861430 1001_ $$00000-0001-5812-3183$$aChang, Kai-Lan$$b0$$eCorresponding author
000861430 245__ $$aA new method ($M^3$Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution
000861430 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2019
000861430 3367_ $$2DRIVER$$aarticle
000861430 3367_ $$2DataCite$$aOutput Types/Journal article
000861430 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552652947_21968
000861430 3367_ $$2BibTeX$$aARTICLE
000861430 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861430 3367_ $$00$$2EndNote$$aJournal Article
000861430 520__ $$aWe have developed a new statistical approach ($M^3$Fusion) for combining surface ozone observations from thousands of monitoring sites around the world with the output from multiple atmospheric chemistry models to produce a global surface ozone distribution with greater accuracy than can be provided by any individual model. The ozone observations from 4766 monitoring sites were provided by the Tropospheric Ozone Assessment Report (TOAR) surface ozone database, which contains the world's largest collection of surface ozone metrics. Output from six models was provided by the participants of the Chemistry-Climate Model Initiative (CCMI) and NASA's Global Modeling and Assimilation Office (GMAO). We analyze the 6-month maximum of the maximum daily 8 h average ozone value (DMA8) for relevance to ozone health impacts. We interpolate the irregularly spaced observations onto a fine-resolution grid by using integrated nested Laplace approximations and compare the ozone field to each model in each world region. This method allows us to produce a global surface ozone field based on TOAR observations, which we then use to select the combination of global models with the greatest skill in each of eight world regions; models with greater skill in a particular region are given higher weight. This blended model product is bias corrected within 2° of observation locations to produce the final fused surface ozone product. We show that our fused product has an improved mean squared error compared to the simple multi-model ensemble mean, which is biased high in most regions of the world.
000861430 536__ $$0G:(DE-HGF)POF3-512$$a512 - Data-Intensive Science and Federated Computing (POF3-512)$$cPOF3-512$$fPOF III$$x0
000861430 536__ $$0G:(DE-Juel-1)ESDE$$aEarth System Data Exploration (ESDE)$$cESDE$$x1
000861430 588__ $$aDataset connected to CrossRef
000861430 7001_ $$0P:(DE-HGF)0$$aCooper, Owen R.$$b1
000861430 7001_ $$00000-0001-5652-4987$$aWest, J. Jason$$b2
000861430 7001_ $$00000-0003-3145-4024$$aSerre, Marc L.$$b3
000861430 7001_ $$0P:(DE-Juel1)6952$$aSchultz, Martin G.$$b4
000861430 7001_ $$00000-0003-3852-3491$$aLin, Meiyun$$b5
000861430 7001_ $$0P:(DE-HGF)0$$aMarécal, Virginie$$b6
000861430 7001_ $$0P:(DE-HGF)0$$aJosse, Béatrice$$b7
000861430 7001_ $$0P:(DE-HGF)0$$aDeushi, Makoto$$b8
000861430 7001_ $$00000-0002-5013-4168$$aSudo, Kengo$$b9
000861430 7001_ $$0P:(DE-HGF)0$$aLiu, Junhua$$b10
000861430 7001_ $$0P:(DE-HGF)0$$aKeller, Christoph A.$$b11
000861430 773__ $$0PERI:(DE-600)2456725-5$$a10.5194/gmd-12-955-2019$$gVol. 12, no. 3, p. 955 - 978$$n3$$p955 - 978$$tGeoscientific model development$$v12$$x1991-9603$$y2019
000861430 8564_ $$uhttps://juser.fz-juelich.de/record/861430/files/gmd-12-955-2019.pdf$$yOpenAccess
000861430 8564_ $$uhttps://juser.fz-juelich.de/record/861430/files/gmd-12-955-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861430 909CO $$ooai:juser.fz-juelich.de:861430$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6952$$aForschungszentrum Jülich$$b4$$kFZJ
000861430 9131_ $$0G:(DE-HGF)POF3-512$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vData-Intensive Science and Federated Computing$$x0
000861430 9141_ $$y2019
000861430 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861430 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000861430 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861430 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOSCI MODEL DEV : 2017
000861430 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000861430 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000861430 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861430 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861430 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861430 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861430 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861430 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861430 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861430 920__ $$lyes
000861430 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000861430 980__ $$ajournal
000861430 980__ $$aVDB
000861430 980__ $$aUNRESTRICTED
000861430 980__ $$aI:(DE-Juel1)JSC-20090406
000861430 9801_ $$aFullTexts