001     861430
005     20230127125335.0
024 7 _ |a 10.5194/gmd-12-955-2019
|2 doi
024 7 _ |a 1991-959X
|2 ISSN
024 7 _ |a 1991-9603
|2 ISSN
024 7 _ |a 2128/21852
|2 Handle
024 7 _ |a WOS:000461042700001
|2 WOS
024 7 _ |a altmetric:57165504
|2 altmetric
037 _ _ |a FZJ-2019-01905
082 _ _ |a 550
100 1 _ |a Chang, Kai-Lan
|0 0000-0001-5812-3183
|b 0
|e Corresponding author
245 _ _ |a A new method ($M^3$Fusion v1) for combining observations and multiple model output for an improved estimate of the global surface ozone distribution
260 _ _ |a Katlenburg-Lindau
|c 2019
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552652947_21968
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We have developed a new statistical approach ($M^3$Fusion) for combining surface ozone observations from thousands of monitoring sites around the world with the output from multiple atmospheric chemistry models to produce a global surface ozone distribution with greater accuracy than can be provided by any individual model. The ozone observations from 4766 monitoring sites were provided by the Tropospheric Ozone Assessment Report (TOAR) surface ozone database, which contains the world's largest collection of surface ozone metrics. Output from six models was provided by the participants of the Chemistry-Climate Model Initiative (CCMI) and NASA's Global Modeling and Assimilation Office (GMAO). We analyze the 6-month maximum of the maximum daily 8 h average ozone value (DMA8) for relevance to ozone health impacts. We interpolate the irregularly spaced observations onto a fine-resolution grid by using integrated nested Laplace approximations and compare the ozone field to each model in each world region. This method allows us to produce a global surface ozone field based on TOAR observations, which we then use to select the combination of global models with the greatest skill in each of eight world regions; models with greater skill in a particular region are given higher weight. This blended model product is bias corrected within 2° of observation locations to produce the final fused surface ozone product. We show that our fused product has an improved mean squared error compared to the simple multi-model ensemble mean, which is biased high in most regions of the world.
536 _ _ |a 512 - Data-Intensive Science and Federated Computing (POF3-512)
|0 G:(DE-HGF)POF3-512
|c POF3-512
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel-1)ESDE
|a Earth System Data Exploration (ESDE)
|c ESDE
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cooper, Owen R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a West, J. Jason
|0 0000-0001-5652-4987
|b 2
700 1 _ |a Serre, Marc L.
|0 0000-0003-3145-4024
|b 3
700 1 _ |a Schultz, Martin G.
|0 P:(DE-Juel1)6952
|b 4
700 1 _ |a Lin, Meiyun
|0 0000-0003-3852-3491
|b 5
700 1 _ |a Marécal, Virginie
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Josse, Béatrice
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Deushi, Makoto
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sudo, Kengo
|0 0000-0002-5013-4168
|b 9
700 1 _ |a Liu, Junhua
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Keller, Christoph A.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.5194/gmd-12-955-2019
|g Vol. 12, no. 3, p. 955 - 978
|0 PERI:(DE-600)2456725-5
|n 3
|p 955 - 978
|t Geoscientific model development
|v 12
|y 2019
|x 1991-9603
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/861430/files/gmd-12-955-2019.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/861430/files/gmd-12-955-2019.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:861430
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)6952
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-512
|2 G:(DE-HGF)POF3-500
|v Data-Intensive Science and Federated Computing
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOSCI MODEL DEV : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21