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Abstract. We have developed a new statistical approach

(M3Fusion) for combining surface ozone observations from

thousands of monitoring sites around the world with the out-

put from multiple atmospheric chemistry models to produce

a global surface ozone distribution with greater accuracy than

can be provided by any individual model. The ozone observa-

tions from 4766 monitoring sites were provided by the Tro-

pospheric Ozone Assessment Report (TOAR) surface ozone

database, which contains the world’s largest collection of sur-

face ozone metrics. Output from six models was provided

by the participants of the Chemistry-Climate Model Initia-

tive (CCMI) and NASA’s Global Modeling and Assimilation

Office (GMAO). We analyze the 6-month maximum of the

maximum daily 8 h average ozone value (DMA8) for rel-

evance to ozone health impacts. We interpolate the irregu-

larly spaced observations onto a fine-resolution grid by using

integrated nested Laplace approximations and compare the

ozone field to each model in each world region. This method

allows us to produce a global surface ozone field based on

TOAR observations, which we then use to select the com-

bination of global models with the greatest skill in each of

eight world regions; models with greater skill in a particular

region are given higher weight. This blended model product

is bias corrected within 2◦ of observation locations to pro-

duce the final fused surface ozone product. We show that our

fused product has an improved mean squared error compared

to the simple multi-model ensemble mean, which is biased

high in most regions of the world.
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1 Introduction

Tropospheric ozone is a pollutant detrimental to human

health and has been associated with a range of adverse car-

diovascular and respiratory health effects due to short-term

and long-term exposure (World Health Organization, 2005;

Jerrett et al., 2009; US Environmental Protection Agency,

2013; GBD, 2015; Turner et al., 2016; Cohen et al., 2017).

Assessing the human health impacts of ozone on the global

scale requires accurate exposure estimates at any given in-

habited location (Shaddick et al., 2018). Due to the lim-

ited availability of surface ozone observations in many re-

gions of the world (Fleming et al., 2018), global atmospheric

chemistry models are required to calculate surface ozone

exposure. Despite continual development and improvement,

global models struggle in their ability to accurately simulate

ozone in all regions of the world (Young et al., 2018). The

ability to accurately simulate observed ozone at a particular

location also varies between models, as demonstrated by sev-

eral multi-model comparisons (Stevenson et al., 2006; Young

et al., 2013; Cooper et al., 2014).

A useful endeavor for producing an accurate representa-

tion of the global surface ozone distribution is to combine the

output from many models in a way that takes advantage of

the strengths of each model and minimizes the weaknesses.

Such efforts have already been made for both climate and

chemistry–climate models. For example, multi-model output

has been combined using a parametric approach, either by as-

signing an equal or optimum weight to each model (Steven-

son et al., 2006; He and Xiu, 2016; Braverman et al., 2017)

or by tuning the initial conditions under different scenarios or

parameterizations (Cariolle and Teyssèdre, 2007; Wu et al.,

2008; Young et al., 2013). These approaches often assume

that individual model biases will at least partly cancel by av-

eraging or weighting, according to certain measures of pre-

dictive performance. Thus, the combined model product is

likely to be more accurate than a single model prediction,

as has been shown for multi-model combinations of past or

present-day climate (Buser et al., 2009; Knutti et al., 2010;

Weigel et al., 2010; Chandler, 2013).

For the case of simply averaging the output from multi-

ple climate models, most studies either explicitly or implic-

itly assume that every model is independent and is a random

sample from a distribution, with the true climate as its un-

biased mean. This implies that the average of a set of mod-

els converges to the true climate as more and more models

are added. This multi-model ensemble often outperforms any

single model in terms of the predictive capability. Undeni-

ably, when one has several dozen or hundreds of possible

ensemble members, the most straightforward and efficient

approach is to simply take the ensemble average, ignoring

the impact of potentially erroneous outlier ensemble mem-

bers. From a statistical point of view, one might argue that

ruling out potentially erroneous ensemble members prior to

conducting the ensemble mean would yield an even better re-

sult, especially if the overall number of ensemble members

is small.

Combining model ensembles using a method more so-

phisticated than the simple average is a challenge because

a meaningful model evaluation can rarely be condensed into

a single metric, and there is no technique that can explic-

itly quantify the degree of similarity (i.e., both accuracy and

precision) between two different spatial fields (Hyde et al.,

2018). Indeed, Stainforth et al. (2007) concluded that any at-

tempt to assign weights is, in principle, inappropriate. With

a lack of appropriate criteria, the model weighting approach

has not become a standard alternative to the ensemble aver-

age. Accordingly, there is presently no objective criterion for

combining surface ozone estimates from a model ensemble

to produce a surface ozone product with improved accuracy

beyond that of any ensemble member or the simple ensemble

mean. The absence of such a methodology is the motivation

for this paper.

This paper presents a new statistical approach (M3Fusion)

for combining surface ozone output from multiple atmo-

spheric chemistry models with all available surface ozone

observations to produce a global surface ozone distribution

with greater accuracy than the multi-model ensemble mean.

As described in greater detail below, this fused surface ozone

product is constructed in three steps: (1) ozone observations

from all available surface ozone monitoring sites around the

world are spatially interpolated to a smooth global field;

(2) for each of eight continental regions of the world, six

global atmospheric chemistry models are evaluated against

the interpolated observed ozone field by a quadratic program-

ming optimization, with the most accurate models receiving

the highest weight; a locally confined spline interpolation

is used at the regional boundaries to avoid unphysical step

changes; (3) finally, the global ozone field derived from the

polynomial equation is bias corrected but only within a lim-

ited distance from available observations. The final product is

based on the annual maximum of the 6-month running mean

of the monthly average daily maximum 8 h average mixing

ratios (DMA8), a metric that can be used to estimate human

mortality due to long-term ozone exposure (Turner et al.,

2016; Malley et al., 2017; Seltzer et al., 2018; Shindell et al.,

2018).

Past estimates of global mortality due to long-term ozone

exposure have relied on surface ozone fields produced by

global atmospheric chemistry models due to the limited cov-

erage of the global ozone monitoring network (Anenberg

et al., 2010; Brauer et al., 2012, 2015; Malley et al., 2017).

The fused surface ozone product is a blend of global surface

ozone observations and model output that has been adjusted

according to the observations. This particular product will be

available for future estimates of global human mortality due

to long-term ozone exposure (e.g., Global Burden of Disease,

Brauer et al., 2012, 2015). Furthermore, the methodology can

be applied to a range of ozone metrics for quantifying the im-
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pacts of ozone on human health, or vegetation, and it can also

be applied to PM2.5, CO2 or any other trace gas.

Section 2 provides details of the data sources and fusion

process, including the techniques to register all data sources

onto a common grid and the statistical model used to min-

imize the difference between interpolated observations and

the multi-model combination. In Sect. 3, the results of em-

ploying these techniques are presented, including the map-

ping accuracy, evaluation of regional model performance and

the final multi-model bias correction. The paper concludes

with a summary and discussion in Sect. 4.

2 Data and method

2.1 Observations and model output

1. Tropospheric Ozone Assessment Report (TOAR) surface

ozone database. In this analysis, surface ozone observa-

tions are used to evaluate the performance of six global

atmospheric chemistry models and to also bias correct

the multi-model surface ozone product. TOAR has pro-

duced the world’s largest database of surface ozone met-

rics based on hourly observations at over 9000 sites

around the globe (Schultz et al., 2017, ozone met-

rics available for download at https://doi.org/10.1594/

PANGAEA.876108). Spatial coverage is high in North

America, Europe, South Korea and Japan, but much

lower across the rest of the world with very low data

availability across Africa, the Middle East, Russia and

India. In addition to data sparseness, other challenges,

such as data inhomogeneity in time and the irregu-

lar spatial distribution of stations (Chang et al., 2017),

make the comparison between model output and ob-

servations difficult without serious statistical modeling.

While satellite retrievals have been utilized by previ-

ous works for quantifying the health impacts of PM2.5

(Brauer et al., 2012, 2015), satellite retrievals of tro-

pospheric ozone have limited sensitivity near the sur-

face and are inadequate for this analysis (Gaudel et al.,

2018).

TOAR has gathered ozone observations through 2014 at

most sites and has chosen 2008–2014 as a “present-day”

window for more rigorous analysis. The purposes of the

multi-year average are to reduce the effects of ozone in-

terannual variability, which is largely driven by changes

in meteorological conditions (Strode et al., 2015), and

to increase the number of available sites than if we used

a single year. In this analysis, we focus on the annual

maximum of the 6-month running mean of the max-

imum daily 8 h average (DMA8) at every site in the

TOAR database. Specifically, the metric was calculated

from the 6-month running mean of the monthly mean

DMA8 ozone values at a given site. This metric was

selected because it aligns with the ozone metric used

by Turner et al. (2016) to quantify the impact of long-

term ozone exposure on human mortality. Hereinafter,

this quantity is simply referred to as “the ozone metric”.

2. Atmospheric chemistry model simulations. We use out-

put from models from phase 1 of the Chemistry-

Climate Model Initiative (CCMI), downloaded from

the Centre for Environmental Data Analysis (CEDA)

database (http://archive.ceda.ac.uk, CEDA, 2019). We

chose four models (CHASER, GEOSCCM, MOCAGE

and MRI-ESM1r1) because they report hourly ozone

output (Table 1). These particular simulations were part

of CCMI’s REF-C2 experiment (Morgenstern et al.,

2017), which follows the World Meteorological Orga-

nization (2011) A1 scenario for ozone depleting sub-

stances, and RCP6.0 for tropospheric ozone precur-

sors, and aerosol and aerosol precursor emissions (Mor-

genstern et al., 2010) for the period 1960–2100. Even

though the most appropriate experiment would have

been the REF-C1SD, in which the models are nudged to

the reanalysis meteorology and thus best represent the

past in the observations, we use output from the REF-

C2 simulation in this study, as the last year of the REF-

C1SD was 2010 and would therefore not cover the most

recent period where observations are available. How-

ever, the NOAA Geophysical Fluid Dynamics Labora-

tory (GFDL) AM3 model continued the simulation over

the entire study period and was therefore selected for

this analysis. In addition, we obtained output from the

GEOS-5 nature run with chemistry (G5NR-Chem), pro-

vided by the NASA Global Modeling and Assimilation

Office (GMAO), which we included in our analysis be-

cause of the model’s very fine horizontal resolution (Hu

et al., 2018), but the output was only available for July

2013 to June 2014.

The output from each individual model is shown in

Fig. S1 in the Supplement. Note that NASA G5NR-

Chem has the finest resolution of these models; accord-

ingly, we aim to produce our final product on the same

0.125◦ × 0.125◦ grid. However, even at this resolution,

the output is not street resolving and thus will not cap-

ture urban-scale variability in the regions with the high-

est population density.

In order to compare model output to observations, we

need to register model output and observations to a com-

mon grid. This registration enables us to quantify the dif-

ferences between the models and observations. Previous at-

tempts have usually relied on a variant from a general statisti-

cal interpolation framework to combine incompatible spatial

data (Gotway and Young, 2002; Fuentes and Raftery, 2005;

Gelfand and Sahu, 2010; Berrocal et al., 2012; Nguyen et al.,

2012). Due to the highly irregular locations of ozone mon-

itors around the globe, we use a kriging technique to build

a statistical model, interpolate the ozone distribution based
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Table 1. List of the ensemble members used in this paper.

Model ID Group Resolution Meteorological References

Forcinga

CHASER Nagoya University; Japan Agency for Marine-Earth 2.8◦ × 2.8◦ C2 Sudo et al. (2002a, b),

(MIROC-ESM) Science and Technology (JAMSTEC), Japan Watanabe et al. (2011)

GEOSCCM NASA Goddard Space Flight Center, USA 2.5◦ × 2◦ C2 Oman et al. (2011)

GFDL-AM3 NOAA Geophysical Fluid Dynamics Laboratory, USA 2◦ × 2◦ C1SD Lin et al. (2012, 2014, 2017)

G5NR-Chem NASA Goddard Space Flight Center, USA 0.125◦ × 0.125◦ b Hu et al. (2018)

MOCAGE Centre National de Recherches Météorologiques; 2◦ × 2◦ C2 Josse et al. (2004),

Météo-France, France Teyssèdre et al. (2007)

MRI-ESM1r1 Meteorological Research Institute, Japan 2.8◦ × 2.8◦ C2 Adachi et al. (2013)

a Meteorological forcing includes coupled ocean–atmosphere (C2) and nudged to observed reanalysis meteorology (C1SD) in CCMI reference simulations (Morgenstern et al., 2017).
b The specification of forcing scenario for this special run is described by Hu et al. (2018).

on the surrogate and then project the global surface onto a

common grid.

2.2 Fusion of observations and models

Following is a description of our method for fusing obser-

vations and output from multiple global atmospheric chem-

istry models to produce a surface ozone product with maxi-

mized accuracy. This method is known as Measurement and

Multi-Model Fusion (version 1), or M3Fusion (v1), and the

code accompanies this paper in the Supplement. We consider

a general framework of uncertainty quantification consisting

of the following components (Kennedy and O’Hagan, 2001;

Chang and Guillas, 2019):

observation = reality + random error;

reality = model + structured bias.

Since this equation requires matching components (observa-

tions and model output) on a common grid, we use the in-

terpolated observations to estimate an optimized weight for

each model by a L2 norm (details are given later), which

means that we expect the multi-model combination to cap-

ture the general pattern of the surface ozone distribution in

terms of their joint predictive capability, and the model bias

is considered as a model correction term. The difference be-

tween observation error and model bias is that the former

term is assumed to be a normal noise with zero mean and

constant variance, and the latter term is considered as a sys-

tematic and structured discrepancy (Williamson et al., 2015),

which will be revealed as a spatial cluster across a poorly

simulated region.

Due to this study’s human health focus, we do not consider

ozone above the data-sparse oceans. Above land, large ob-

servational gaps are present across Africa, the Middle East,

South America, and south and southeast Asia, where the spa-

tial interpolation is generally too uncertain to yield a reli-

able surface ozone approximation. The ozone estimates in

these regions must come from either models or distant ob-

servations, neither of which is ideal to solve this issue. As

a compromise strategy, we fill these gaps with a weighted

model product evaluated by the interpolated ozone observa-

tions. We propose the following procedure to combine model

output and observations for data integration:

1. Interpolating irregularly located monitoring observa-

tions to the model output grid. Kriging is a proce-

dure used to statistically interpolate irregularly spaced

and/or sparse observed data onto a regular and dense

grid, based on a weighted average of the fitted surrogate

model in the neighborhood of the grid. We assume that

the global ozone distribution can be approximated by

a Gaussian spatial process (GP) with a constant mean

and Matérn covariance function (Stein, 2012). The GP

fitting typically involves a cubic complexity and thus

is computationally expensive for large spatial data sets.

Therefore, several alternatives have been developed to

address the large n issue by using a reduced set of data

(Cressie and Johannesson, 2008; Banerjee et al., 2012;

Liang et al., 2013), tapering the covariance between two

grid points to zero if their distance is beyond a certain

range (Furrer and Sain, 2009; Sang and Huang, 2012)

and/or evaluating the covariance only through the spec-

ification of a neighborhood system (also known as the

Gaussian Markov random field) (Rue et al., 2009; Lind-

gren et al., 2011).

In this study, we carry out the spatial interpolation by

using the combination of the integrated nested Lapla-

cian approximation (INLA) framework (Rue et al.,

2009) and the stochastic partial differential equation

(SPDE) technique (Lindgren et al., 2011), available as

an R package (http://www.r-inla.org/) (Lindgren and

Rue, 2015). The details of this technique are rather

complex and the reader is referred to the original pa-

per (Lindgren et al., 2011); however, we describe the

key component of this INLA-SPDE technique in Ap-

pendix A. INLA-SPDE spatial modeling has proven to

be effective in a wide range of applications (Cameletti

et al., 2013; Shaddick and Zidek, 2015; Heath et al.,

2016; Liu and Guillas, 2017; Rue et al., 2017). We

chose this technique because it manages a fairly large
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and complex spatial field in a relatively efficient way

(Rue and Held, 2005) and allows an extension for non-

stationarity on the sphere (Bolin and Lindgren, 2011;

Chang et al., 2015). Notably, a recent study elaborately

compared dozens of spatial modeling approaches, and

the results suggest that almost all of these approaches

can achieve a similar performance in terms of their pre-

dictive accuracy, albeit with very different computation

times (Heaton et al., 2018). Therefore, we expect that

the choice of spatial modeling approach is not the most

crucial component in our data fusion process as long

as the analysis is carried out in a rigorous way (i.e.,

through the statistical model selection and diagnostics).

To differentiate this result from the actual observations

in the TOAR database, we refer to this interpolated sur-

face as the “spatially interpolated ozone”.

We carry out the statistical interpolation via the fol-

lowing steps: (1) calculate the ozone metric at each

TOAR site and for every year in 2008–2014; (2) per-

form the statistical interpolation using all available sites

with their exact coordinates and project the surface

onto a 0.125◦ × 0.125◦ spherical grid for every year;

(3) average these surfaces over the 7 years to yield an

observation-based present-day ozone distribution. We

expect that this aggregation will smooth out at least

some of the potential uncertainties. The kriging can be

seen as a nonparametric regression problem; therefore,

a statistical assessment of fitted quality must be consid-

ered to select the best representation to the data (Hoet-

ing et al., 2006). Further details on the statistical model

selection procedure are provided in Appendix A.

We use a bilinear interpolation to smooth model out-

put from coarser resolution to a 0.125◦ × 0.125◦ grid

(Jun et al., 2008). The ozone metric for each model was

calculated for each single grid in each year, then aver-

aged over 2008–2014 (except for NASA G5NR-Chem,

which was already in fine resolution, but only available

for 1 year).

2. Weighting model output against spatially interpolated

ozone by region. The next step is to create an intermedi-

ate “multi-model composite”. We divide the global land

surface into eight regions (see Fig. 1), roughly match-

ing the continental outlines or major population regions.

We adopt this regional approach because global models

vary in their ability to simulate ozone in different re-

gions of the world. Next, we regress the observations

on multi-model output by a constrained least square

approach within each of the eight regions. Let sg be

the grid cell at resolution 0.125◦ × 0.125◦, ŷ(sg) be the

interpolated observations and {ηk(sg);k = 1, . . .,6} be

the model output registered onto the same grid from

the six models considered in this paper (Table 1). The

optimization equation is based on a constrained least

squares approach:

minimize
{αr,βr k ;k=1,...,6}

∑

sg∈Region r

(

ŷ(sg)−αr −

6
∑

k=1

βr kηk(sg)

)2

, (1)

subject to

6
∑

k=1

βr k = 1 and βr k ≥ 0.,

where αr is a constant that allows adjustment to the

overall (regional) underestimation or overestimation;

βr k is an optimal weight for the kth model in region r .

Note that since the interpolated observations and mod-

els use the same ozone metric with the same units, we

constrain the weights to be positive and sum to 1 for a

better physical interpretability, such that the most accu-

rate models receive the higher weight. The offset term

αr is aimed to adjust the overall residuals between the

observation field and the multi-model composite into

zero mean in each region (regardless of the spatial pat-

tern); therefore, if two spatial fields share a great simi-

larity in terms of their spatial curvatures, but the overall

means are different, this term can fill the gap of the over-

all mean difference between the two fields. The weights

are optimized in terms of the squared distance between

the interpolated ozone and multi-model output. A dif-

ferent criterion of optimization, such as mean absolute

error, can be established accordingly.

Due to the sparsity of stations in many regions, we

use a predefined geometric boundary to differentiate re-

gions. A more meaningful physical boundary (i.e., re-

gions with similar chemical regimes or major features

such as deserts, mountain ranges or water bodies) might

be determined using a cluster analysis technique (Hyde

et al., 2018), but such a step is beyond the scope of this

paper.

Since we partition the global land surface into eight re-

gions and evaluate the models individually, inevitably

there will be disjointed boundaries between regions.

The boundaries between North and South America,

or between east Asia and Oceania, fall mostly in the

oceans, so we do not need to adjust these regions.

However, we should make an adjustment to disjointed

boundaries that fall across inhabited areas (see Fig. S2

for the illustration). As an example of our method, con-

sider the boundary between east Asia and Russia near

50◦ N. We increase the northern boundary of east Asia

to 55◦ N and decrease the southern boundary of Rus-

sia to 45◦ N, to create an overlapping intersection, and

then fit cubic splines (performed for each grid cell) with

knots placed at every 2◦ grid cell (Wood et al., 2008).

This smoothing is carried out using a low-rank Gaus-

sian process by the default penalized least square from

the function “gam” in the R package mgcv (Kammann

and Wand, 2003; Wood, 2017), following the exam-

ples of Wood and Augustin (2002). The purpose is to

www.geosci-model-dev.net/12/955/2019/ Geosci. Model Dev., 12, 955–978, 2019
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merely avoid a sharp and unrealistic (geometric) tran-

sition between three regions and to efficiently smooth

out the discontinuity, performed in a regular spaced grid

only around the geometric boundary. Any region away

from the geometric boundary will not be affected by this

smoothing, which should be considered as a blending of

multiple models without any attempt of bias correction.

It should be noted that the INLA-SPDE technique in

step 1 is applied to the observations, while the smooth-

ing spline is only applied to the boundaries between re-

gions of the model composite, not directly involving any

observations.

We adopted a regression weighting approach that only

accounts for the mean spatial fields of the interpo-

lated ozone and model output, rather than the underly-

ing associated uncertainty. We take this approach due

to the prohibitive size of high-resolution output (over

1 million output points for each model) but also due

to the lack of a thorough investigation regarding the

ideal method for combining models based on different

sources of uncertainty. For example, the interpolation

uncertainty can be quantified easily through the poste-

rior distribution and considered to be related to mea-

surement error (small scale) or sparse sampling across

a region (large scale); however, model uncertainty is a

different concept altogether that could result from input

uncertainty (e.g., air pollution emissions inventories) or

limitations of the transport and chemistry mechanisms

within the model (Brynjarsdóttir and O’Hagan, 2014).

The current interest of this study focuses on a better

estimate of mean ozone exposure. Explicit quantifica-

tion of different sources of model uncertainty and in-

corporation of this information into the data fusion pro-

cess presents another level of complexity that cannot be

tackled until model uncertainties are better character-

ized. Young et al. (2018) provide a current overview of

chemistry–climate modeling and discuss the challenges

of improving models in light of so many uncertainties.

3. Correcting multi-model bias in areas close to observa-

tions. A common practice of studying the model dis-

crepancy in the spatial fields is to fit a statistical model

for their differences from observations on the whole

spatial domain, to see whether or not these residuals re-

veal any structured spatial pattern (Jun and Stein, 2004;

Sang et al., 2011). If the model adequately simulates the

ozone distribution (up to a level shift and a scale factor),

then there is no relevant information in these residuals.

On the other hand, if the model does not properly repre-

sent the local structure, then the residuals should exhibit

a signal of the discrepancy in that region (Guillas et al.,

2006; Williamson et al., 2015). However, in our case,

the regular grid observation field is obtained from spa-

tial kriging, such that in many data-sparse regions we

do not actually have observed ozone, which prevents us

from correcting the model in these regions. Instead, we

conduct a limited model bias correction based on the

distance to the nearest monitoring station, but we ignore

the differences between the multi-model composite and

the interpolated observations in the sparsely monitored

regions. In our approach, we only correct the output grid

where there is at least one observational station within

a 2◦ radial distance of the grid cell in question (i.e., the

distance to the nearest station is less than 2◦). We then

end up using















ŷ(sg), if a grid cell sg is within a 2◦ radial distance

of the station;

αr +
6
∑

k=1

βr kηk(sg), otherwise,

to generate our high-resolution global surface ozone es-

timate. Given the limited availability of observations

worldwide, we were only able to apply this final bias

correction to 14.4 % of the globe’s land area. We refer to

the final outcome as the “fused surface ozone product”.

3 Results

3.1 Mapping and uncertainty

Ground-based measurements were available from 4766 sta-

tions reported in the TOAR database (Schultz et al., 2017).

To illustrate the spatial coverage of the database, Fig. 1 shows

the ozone metric discretized to a 2◦ × 2◦ grid (a finer resolu-

tion will be too obscure for illustrative purposes), averaged

over the period 2008–2014. This figure also shows our re-

gionalized classification, including Africa, North America,

South America, east Asia, southeast and central Asia, Eu-

rope, Oceania and Russia. Note that dense station networks

are found in North America, Europe and east Asia (mostly

in Japan and South Korea), while monitoring sites are more

widely scattered across the remaining regions. The highest

average ozone levels are found at sites in China, South Korea,

Japan, Taiwan, India, Greece, California and Mexico City.

Figure 2a shows the spatially interpolated surface in each

cell. For each grid cell, there is an underlying (poste-

rior) probability distribution which incorporates information

about the interpolation uncertainty. Figure 2b shows the half

width of the 95 % posterior credible interval in each cell

(Shaddick et al., 2018). From the spatial pattern of uncer-

tainty, we can see that relatively higher uncertainties are ex-

pected in Africa, the Middle East, south Asia and Russia,

regions with very limited observations; lower uncertainty is

associated with regions with a dense station network, such

as North America and Europe. Due to the limitations of spa-

tial kriging in a sparsely monitored region, the observations

are often interpolated across very great distances, such as in

South America, Africa and central Asia. This method is not
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Figure 1. TOAR observations where the monitoring locations are discretized to a 2◦ × 2◦ grid in 2008–2014.

ideal, and instead information from models can be used to fill

in the blanks.

The ozone metric for each model was calculated for each

individual grid cell in each year, then averaged over 2008–

2014 and registered to the common 0.125◦×0.125◦ grid (ex-

cept for NASA G5NR-Chem, which was already in fine res-

olution, but only available for 1 year). Figure 3a shows the

surface ozone metric which results from the simple ensem-

ble average of the six models. It was generated from bilinear

interpolation of the ozone metric on the standard output grid,

by calculating the same metric for each grid cell in each year,

averaging over 2008–2014 and then averaging over the six

models. We refer to this product as the “multi-model mean”,

and we use it to validate our final product, which should out-

perform not only each individual model but also the multi-

model mean.

Averaging all six models captures the large-scale varia-

tions of the ozone distribution; however, many regions in

northern midlatitudes and low latitudes are biased high com-

pared to the observations in the TOAR database. A simple

approach to address the uncertainty in the multi-model mean

is to calculate the standard deviation for each grid cell from

the different models, as shown in Fig. 3b. Higher model un-

certainties across south Africa and the Middle East match the

pattern of the interpolation uncertainty in Fig. 2b, and lower

model uncertainties occur in regions with dense station net-

works. These findings suggest that the multi-model mean un-

certainty can also reflect the current limited understanding of

surface ozone in regions with limited or no observations.

It should be noted that the spatially interpolated observa-

tions are smoother in regions with fewer sites and reveal a

more detailed structure in regions with a dense station net-

work. In contrast, the multi-model mean is more noisy. Even

though we average across multiple years and multiple mod-

els, the resulting ozone metric can still be noisy because

it is calculated at each grid cell independently. In order to

make maximum use of the skill of each model, we restrict

the model evaluation to the regional scale in the next section.

3.2 Regional model evaluation and multi-model

composite

To evaluate the performance of each model in a given region,

we calculate the mean differences over all grid cells within

the region and summarize them with the root mean square er-

ror (RMSE). Let ŷ(sg) be the spatially interpolated observa-

tions and {ηk(sg);k = 1, . . .,6} be the output corresponding

to the six ensemble models considered in this paper; then, the

(normalized) RMSE is given by

RMSEr k =

√

∑

sg∈Region r

(

ηk(sg)− ŷ(sg)
)2

n
,

where n is the number of grid cells in a given region r . The

first part of Table 2 shows the RMSE statistics for each model

by region. The reliability of such an evaluation is limited by

the station density in a given region, with greater reliabil-

ity in a dense network (e.g., USA) and less reliability in a

sparse network (e.g., Africa, South America or Australia).

On average, CHASER, GEOSCCM and G5NR-Chem have

the lowest biases in multiple regions; GFDL-AM3 and MRI-

ESM1r1 also show low mean biases in certain regions, such
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Figure 2. Estimates of spatially interpolated surface ozone distribution and associated uncertainty (half width of the 95 % credible interval

from each cell).

as America and Europe. However, larger model biases can be

found in Africa, and east and south Asia.

Next, we select three regions with extensive monitoring:

North America, Europe and east Asia. Figure 4 shows the

differences between the spatially interpolated observations

and model output in North America. A consistent underes-

timation can be found in the Mexico City region for all mod-

els. A clear overestimation is also found across much of the

eastern US, as well as the western US and Canada, except

for CHASER, which shows a mild underestimation in these
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Figure 3. Multi-model mean and standard deviation (SD) in each grid cell from six ensemble members.

regions; in Europe (Fig. 5), the models show mild levels of

overestimation across most of the region, especially for Italy.

In east Asia (Fig. 6), the models show a major bias across

east China and a similar bias pattern across the entire region,

although the bias amplitude is smaller for GEOSCCM. How-

ever, since the observations are relatively sparse in mainland

China, the large scale of these estimated biases might be an

interpolation artifact.

We argue that the credibility of the model is not en-

tirely decided by the RMSE (i.e., the mean difference): the

smoother the difference plots, the easier it is to carry out the

model bias correction. Indeed, the observations and model
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Figure 4. Spatial distributions of the ozone metric in North America from each model minus spatially interpolated observations.
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Figure 5. Spatial distributions of the ozone metric in Europe from each model minus spatially interpolated observations.
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Figure 6. Spatial distributions of the ozone metric in east Asia from each model minus spatially interpolated observations.
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output are not expected to match point by point. We should

also expect the model to capture the general pattern of the

spatial distribution, rather than a pointwise agreement.

The estimated weights from the constrained least squares

(Eq. 1) are given in the second part of Table 2. Due to fixed

underlying spatial structures, this approach tends to give

greater weight to a single model (i.e., ≥ 50 %); the one which

provides the best match between its spatial structure and

the observational field (e.g., G5NR-Chem in North Amer-

ica). Note that this approach disfavors noisy spatial structure;

therefore, the algorithm gives low weights to MOCAGE, for

several reasons. First, the MOCAGE ozone field has not been

smoothed by interpolation since it is already produced on the

MOCAGE model grid, whereas all other models are inter-

polated. Secondly, MOCAGE uses a more complete tropo-

spheric chemical scheme with a larger range of species (77

tropospheric species) and has generally a higher reactivity

compared to most chemistry–climate models (CCMs) (Voul-

garakis et al., 2013). Thus, it tends to provide more tempo-

ral and spatial variability. Note that our optimization algo-

rithm estimates the weights according to the similarity of the

spatial structures between the interpolated surface and each

model. In regions with sparse monitoring, the kriged surface

can be greatly affected by a few scattered stations; therefore,

we cannot use the resulting weights to evaluate the actual

model performance in these regions.

The last column of Table 2 shows the averaged and com-

bined RMSEs from the equal weights and the constrained

weights. A reduced overall bias can be generally achieved

from the constrained weights. This approach suggests that

even if a model has a large mean error (e.g., GFDL-AM3),

it can still be a good simulation if it produces a spatial pat-

tern and curvature similar to the observation field. A con-

stant offset αr in the optimization Eq. (1) is included to re-

move the overall bias over each region, such that the resid-

uals from the optimization have a zero mean. On the other

hand, if we do not include αr in the equation, GFDL-AM3

will have a smaller weight in the optimization, and CHASER,

GEOSCCM and G5NR-Chem will dominate most of these

regions (not shown).

We combine all models according to the optimum weights

from each region for each model. Figure 7a shows a map of

the multi-model composite, a weighted blend of the six mod-

els, with the weighting calculated separately for each con-

tinent. Models with greater simulation skill receive higher

weighting. The result reveals a systematic adjustment to

the large-scale overestimation from the ensemble mean in

Fig. 3a. This demonstration of a general high bias among

the models argues against using the simple ensemble model

mean for estimating surface ozone. However, when com-

pared to the TOAR observations, the multi-model composite

still has clear local biases.

3.3 Local bias correction

The last step of producing the final fused surface ozone

product is to apply a bias correction to our multi-model com-

posite, limited to just those areas in close proximity to ozone

observations. Ideally, we would like to apply a bias correc-

tion according to raw observations, but most stations are

not exactly located on the model grid coordinates (even at

0.125◦ × 0.125◦ resolution). Therefore, to carry out a statis-

tical bias correction on a particular grid, we need to consider

the number of nearby stations and the distance to each sta-

tion. All these considerations aim to deduce a single correc-

tion value on a single grid, and thus we are still faced with

implementing statistical interpolation. To avoid adding an-

other level of complexity, we set the final fused product to be

exactly equal to the spatially interpolated ozone field within

2◦ of an observation, as the spatially interpolated ozone field

has already accounted for all observations. Due to the global

sparseness of observations, about 85 % of model grid cells

over land were not affected by this bias correction. After bias

correcting the multi-model composite grid cells within 2◦ of

a TOAR observation site, an immediate benefit is seen for the

US, Mexico City, Italy and South Korea (see Fig. 7b).

The choice of the correction range, in this case 2◦, is a ad

hoc decision; we also present results with different correction

ranges in Figs. S3 and S4. When the radius of influence of the

TOAR observations is increased to 5◦ or more, the greatest

impact is seen for the Mexico City region and eastern China.

An increase of correction range is not ideal because it extrap-

olates the Mexico City ozone values into the less populated

regions of Mexico. Increasing the radius to 5◦ or more does

not improve upon the RMSE associated with 2◦. Therefore,

accepting the 2◦ bias correction over other ranges is subjec-

tive.

The fused product can be evaluated in terms of spatial cor-

relation using the variogram which assumes that spatial cor-

relation is not a function of absolute location but only a func-

tion of distance (i.e., stationarity). Since spatial variability

and continuity from the models are the result of geophysical

processes represented by mathematical equations, the vari-

ogram must be customized for each field. In addition, the

extremely large size of the model output prohibits us from

carrying out a standard empirical variogram analysis, which

requires calculating the variance of the difference between

all pairwise grid cells.

Nevertheless, we provide examples of omnidirectional

variograms for the spatial field in North America from each

model and product in Fig. S5. The standard variogram analy-

sis focuses on the following three parameters: (1) the nugget

(variance at zero distance, which represents a subgrid vari-

ation), which is similar for all cases; (2) the sill (total vari-

ance of a field), where the variogram value reaches a maxi-

mum and levels off; (3) the range (a distance where the sill

is reached, and beyond that there is no longer spatial corre-

lation). Note that a continuously increasing variogram indi-
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Figure 7. Multi-model composite and bias-corrected surface.
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Table 2. RMSEs (averaged errors in a given region) between spatially interpolated observations and each model, along with regionally

optimized weights {βrk : for kth model in region r} (zero weights are not displayed). Last column shows the RMSEs from equal weighted

averages or constrained weights from the multi-model composite. All the numbers are reported in units of ppb (i.e., parts per billion by

volume).

Region Regional RMSE Averaged error

CHASER GEOSCCM GFDL-AM3 G5NR-Chem MOCAGE MRI-ESM1r1

Africa 6.40 8.91 12.16 12.16 10.47 14.89 10.83

N. America 10.04 8.90 11.28 9.20 24.39 8.41 12.04

S. America 7.39 7.19 10.00 8.81 10.59 8.59 8.76

E. Asia 9.12 9.42 15.89 13.33 17.68 14.40 13.31

S./C. Asia 7.68 15.11 13.36 13.38 13.37 18.41 13.55

Europe 9.14 8.41 10.75 8.20 11.88 9.66 9.67

Oceania 6.00 6.81 11.82 9.42 9.38 9.24 8.78

Russia 6.59 9.10 11.71 7.86 20.29 6.04 10.27

Region Constrained weights of the multi-model composite Composite error

αr CHASER GEOSCCM GFDL-AM3 G5NR-Chem MOCAGE MRI-ESM1r1

Africa −5.25 0.27 0.12 0.43 0.01 0.17 – 5.39

N. America −7.84 – 0.38 – 0.62 – – 4.35

S. America 2.13 0.63 0.13 – 0.24 – – 5.37

E. Asia −7.99 0.08 0.83 0.09 – – – 4.88

S./C. Asia −8.90 0.52 0.26 0.12 0.10 – – 4.95

Europe −9.91 – – 0.78 0.13 0.09 – 2.75

Oceania −2.36 0.73 – – 0.27 – – 5.76

Russia −7.15 0.21 – 0.45 0.32 0.02 – 2.04

cates the evidence of nonstationarity in the field, which is

the case for SPDE, an issue that we have accounted for. The

variogram peak is about 35–40◦ for the models. The result

is very similar for G5NR-Chem, GEOSCCM and GFDL-

AM3, while CHASER and MRI-ESM show a larger variance

in the spatial field. The reason is that the latter two models

produce low ozone in the high-latitude region over Canada

(see Fig. S1), but the former three models simulate relatively

higher ozone in the same region, and this difference is re-

flected by the total variance. Even though North America has

one of the most extensive monitoring networks in the world,

some of the remote areas (mostly in Canada) are mainly de-

scribed by the model output in the final fused product. There-

fore, the variogram of the fused product is likely adjusted

toward the remote areas of Canada as simulated by G5NR-

Chem, which provided the largest weighting in North Amer-

ica).

3.4 Validation of the results

Since the raw observations are the only reliable source for

validating our results, we align each model grid to observed

locations for evaluating the predictive performance. The RM-

SEs of the residuals from all observations in 2008–2014 are

displayed in Table 3. Note that, since the global network of

monitoring stations is heavily weighted by North America,

Europe, South Korea and Japan, these numbers are not repre-

sentative of the sparsely monitored regions. We compare the

Table 3. RMSE against TOAR observations (i.e., not interpolated

ozone) from the multi-model mean (MMM), multi-model compos-

ite (from fusion step 2) and the final fused product (from fusion

step 3).

MMM Composite Fusion

E. Asia 14.44 5.72 4.27

Europe 11.64 5.31 4.26

N. America 12.22 4.51 2.76

Overall∗ 12.32 5.16 3.82

∗ Overall category includes all available sites around the world.

fused surface ozone results to the simple multi-model mean

from all six models. Our interim product, i.e., the multi-

model composite, is also compared in Table 3.

Our multi-model composite outperforms the multi-model

mean in terms of lowest mean predicted error. Based on the

spatially interpolated observations, the resulting multi-model

composite takes advantage of the strengths of each model

and achieves a better accuracy. This result proves that our

approach is effective, since our interim product has already

improved upon the simple multi-model mean. The bias cor-

rection further reduces the residuals: this is expected because

the spatial kriging algorithm is designed to minimize the dif-

ference to observations; thus, it has the lowest RMSE (this

value is the same for the kriging result and the fused product
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since we apply the correction based on observed locations).

The RMSE of approximately 5 ppb may represent the inter-

annually varying meteorological influence during the years

2008–2014. If this is the case, then 5 ppb may approximate

the minimal RMSE that can be achieved in a multi-year anal-

ysis.

In summary, the simple multi-model mean method may

perform fairly well at the continental or regional scale but

does not provide an accurate representation of the subre-

gional structure; this is of course a limitation on the use of

coarse model resolutions. The weighting applied during the

construction of the multi-model composite improved the ac-

curacy but the effect could be limited, because many small-

scale processes are not (yet) resolved by the models. To alle-

viate the discrepancy further, a statistical method based on lo-

cal observations is applied to correct the bias. The advantage

of our fused surface ozone product over the simple multi-

model mean can be clearly seen in Fig. 8. When interpreting

the fused product, the reader should consider the following:

(1) for a region with an extensive monitoring network, such

as the US, a detailed bias correction can be achieved. We can

utilize the observations to accurately reflect many local fea-

tures (i.e., subgrid variations) as shown in the ozone pollu-

tion hotspots of southern California and Mexico City. How-

ever, it should be noted that this improvement is due to local

bias correction instead of model weighting. (2) For regions

with large observational gaps, such as South America, Africa

or Russia, the spatial difference between the fused product

and the multi-model mean is rather featureless, because the

model weighting can only adjust the overall regional mean

according to a few monitoring sites and cannot address the

local variations. Filling large data gaps with the intermedi-

ate multi-model composite can indeed avoid the influence

of preferential sampling (Diggle et al., 2010; Shaddick and

Zidek, 2014), but it is still subject to a high uncertainty due

to lack of data.

4 Discussion and conclusions

In this article, we present a flexible framework to incorporate

observations and multiple models for providing an improved

estimate of the global surface ozone distribution. Combining

multivariate spatial fields in the estimation of ozone distri-

bution is an extension of both the conventional multi-model

ensemble approach (i.e., simple average) and a statistical bias

correction approach, and was found to improve the prediction

of surface ozone. In summary, our approach has the follow-

ing properties:

1. The multi-year average enables us to reduce the mete-

orological influence on surface ozone. An extension of

this method to time-resolved multi-annual fields can be

expected to capture the interannual variability (Shad-

dick and Zidek, 2015); however, such an endeavor

would be highly computationally demanding in such a

fine-resolution setting.

2. The INLA-SPDE interpolation framework allows for

modeling of potential nonstationarity in the spatial pro-

cesses.

3. Regional model evaluation facilitates a feature selection

for multiple competing atmospheric models.

4. Local bias correction of the multi-model composite only

at a limited range of grid cells avoids using the spa-

tially interpolated ozone field in regions associated with

higher levels of uncertainty.

5. For the regions with dense monitoring networks (such

as North American, Europe, South Korea and Japan),

the final fused product was obtained mainly from the in-

terpolation of observations; elsewhere, the final product

relied on the multi-model composite through an opti-

mized weight from each model.

Human health studies typically adopt a fine grid resolu-

tion, such as a 0.1◦ × 0.1◦ grid product, for matching to the

gridded world population database. Even though the spatial

kriging surrogate can produce the predicted value at any res-

olution, the accuracy of the fused surface ozone product is

still limited by the density of observations around that point

and by the resolution of the global model output. Regarding

future improvements, two key developments can be expected

to yield a better estimation of the global surface ozone distri-

bution: firstly, we can include more simulators for increased

leverage. Another way to increase the estimation accuracy is

to expand ozone monitoring networks across sparsely sam-

pled regions (Sofen et al., 2016; Schultz et al., 2017; Weath-

erhead et al., 2017).

The application of our methodology focuses on, but is not

limited to, a particular ozone metric relevant for quantifying

the impact of long-term ozone exposure on human health.

We expect that this framework could also be applied to other

ozone metrics relevant to crop production or natural vegeta-

tion (Lefohn et al., 2018; Mills et al., 2018), or any other trace

gas, provided adequate in situ observations are available for

model evaluation.

In general, atmospheric chemistry model estimates of sur-

face ozone levels are biased high, as demonstrated by a com-

parison of the annual mean surface ozone produced by the

ACCMIP (Atmospheric Chemistry and Climate Model In-

tercomparison Project) multi-model ensemble to the TOAR

surface ozone database (see Fig. 6 of Young et al., 2018).

This analysis has shown that the high bias is also prevalent

among models when employing an ozone metric that focuses

on the high end of the ozone distribution (Fig. 8). Similarly,

Shindell et al. (2018) compared the NASA GISS-E2 model to

observed values of annual mean DMA8 and concluded that

the model was biased high by 25 %. Given the common ten-

dency for models to overestimate surface ozone, the method-
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Figure 8. Map showing result for multi-model mean minus the fused surface ozone.

ology developed by this paper can be used to improve the

accuracy of model output, either for individual models or for

multi-model ensembles.

Code and data availability. The sources of the TOAR data and

the output from four CCMI models are listed in Sect. 2.1; the

output from the GFDL-AM3 model is archived at GFDL and

is available to the public upon request to Meiyun Lin; G5NR-

Chem model output is available for download at https://portal.nccs.

nasa.gov/datashare/G5NR-Chem/Heracles/12.5km/DATA (NCCS,

2019) or can be accessed through the OpenDAP framework at

the portal https://opendap.nccs.nasa.gov/dods/OSSE/G5NR-Chem/

Heracles/12.5km (last assess: 28 February 2019). All computations

in our methodology are implemented in R (R Core Team, 2013).

The relevant code can be found in R packages for statistical interpo-

lation (R-INLA; Lindgren and Rue, 2015), quadratic programming

(limSolve) and spline smoothing (mgcv; Wood, 2017). The R code

accompanies this paper on its associated GMD web page.
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Appendix A: Spatial modeling using the INLA-SPDE

approach

In this paper, the aim of spatial interpolation is to use (dis-

cretized) monitoring observations to build a statistical sur-

rogate model for estimating the ozone distribution over the

whole domain on a sphere. We assume that this ozone dis-

tribution follows a Gaussian process (GP). A GP is a collec-

tion of random variables such that any subset of the obser-

vations has a joint Gaussian distribution. It has been widely

used in many applications as a machine learning algorithm

(Rasmussen and Williams, 2006). In this section, we briefly

introduce the GP model with a focus on spatial kriging. The

GP is a popular choice in spatial statistics because it allows

modeling of fairly complicated functional forms, and it also

provides a prediction and associated uncertainty at any new

location. A common limitation of this interpolation is that the

resulting distribution of estimated uncertainty will be lower

around individual stations or within dense monitoring net-

works, and higher in sparsely monitored regions.

Let Y denote an n vector of ozone observations measured

at monitoring sites s; then a statistical model for the spatial

field can be expressed as Y = f (s)+ ε; i.e., the model com-

prises a smooth GP spatial process f (s), capturing spatial as-

sociation, and an independent normal error ε, which follows

a normal error N(0,σ 2). This error term can accommodate

potential measurement error; on the other hand, kriging with-

out measurement error is usually used for the surrogate of

a deterministic model (i.e., the same input always produces

the same output), also known as an emulator (e.g., Conti and

O’Hagan, 2010).

The specification of a GP is through its mean function and

covariance function, denoted by f (s)∼ GP
(

m(s),c(s,s′)
)

.

To reduce computational intensity, the mean function can

be assumed to be a constant m(s)= µ; thus, the resulting

spatial distribution is completely defined by the covariance

function. A covariance function characterizes correlations

between different locations in the spatial process; it is the

crucial component in a GP, as it represents our assumptions

about the latent field from which we wish to build a surro-

gate. Specifically, we use the Matérn covariance function,

which is a flexible covariance structure and widely used in

spatial statistics (Hoeting et al., 2006; Jun and Stein, 2007,

2008). With the shape parameter ν > 0, the scale parame-

ter κ > 0 and the marginal precision τ 2 > 0, the covariance

structure can be written as

c(h)=
21−ν

4πκ2ντ 2Ŵ(ν+ 1)
(κ‖h‖)νKν(κ‖h‖),h ∈ S

2,

where h denotes the distance between any two locations:

h = s − s
′, Ŵ is a gamma function, and Kν is the modified

Bessel function of the second kind of order ν > 0. The scale

parameter κ controls the rate of decay of the correlation be-

tween two locations as distance increases. Smaller values of

κ allow for longer ranges over which two sites can be corre-

lated. The smoothness parameter ν can be seen as the deter-

mining behavior of the autocorrelation for observations that

are separated by a small distance.

The major disadvantage of using a GP is the computational

complexity, which typically involves a cubic complexity in

the number of data points, usually denoted asO(n3). Several

attempts have been made to reduce the computational bur-

den: e.g., Cressie and Johannesson (2008), Rue et al. (2009),

Banerjee et al. (2012) and Gramacy and Apley (2015). Lind-

gren et al. (2011) introduced a popular approach in which

the Matérn covariance can be approximated by the solution

of certain stochastic partial differential equations (SPDEs).

According to Lindgren et al. (2011), a GP process f (s) with

Matérn covariance on a sphere is the solution of the follow-

ing stationary SPDE:

(κ2 −1)(ν+1)/2τf (s)=W(s),

where1 is the Laplace operator andW is the Gaussian white

noise. The core implication of this mathematical relationship

is that an efficient algorithm for solving this SPDE can be

applied to approximate the GP (Lindgren et al., 2011).

This INLA-SPDE technique also enables us to quantify

the level of nonstationarity in a spatial field by employing

basis function representations for both κ and τ (i.e., these

quantities are constants in a stationary field). To obtain ba-

sic identifiability, κ(s) and τ(s) are taken to be positive, and

their logarithm can be represented as

logκ(s)=

p
∑

k=1

θκk ψk(s) and

logτ(s)=

p
∑

k=1

θ τk ψk(s), (A1)

where {ψk(s)} is a set of spherical harmonics. The coeffi-

cients {θκk } and {θ τk } represent local variances and correlation

ranges (Bolin and Lindgren, 2011; Lindgren et al., 2011). A

larger number of basis functions permits the representation

of smaller local features.

We now illustrate a series of statistical model fits to select

the best predictive ability of the SPDE model. To choose the

maximum number of basis functions for the parameters κ and

τ in Eq. (A1), model selection techniques must be used. We

perform the model selection based on the following criteria:

– RMSE is the measure of the overall mean difference be-

tween predicted values and the observed values.

– DIC (deviance information criterion) is a measure to

compare performance of statistical models by using a

criterion based on a trade-off between the goodness

of fit and the corresponding complexity of the model.

Smaller values of the DIC indicate a better balance be-

tween complexity and a good fit.
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– GCV (generalized cross validation) calculates the mean

residuals in a leave-one-out test. The model that mini-

mizes the average predicted residuals over all the data is

selected as the best model (Schneider, 2001).

We estimate nine statistical models with different numbers

of basis functions, presented in Table A1. The simplest model

is a stationary Matérn model (we use basis number 0 to rep-

resent κ and τ as constants). The best fit of all criteria occurs

when the orders of the basis functions are increased from

four to five. We therefore conclude that a model with five

spatially varying basis functions is most appropriate for the

TOAR observations.

Table A1. Summary of results from fitting nine candidate statistical models (annual average over 2008–2014).

No. basis 0 1 2 3 4 5 6 7 8

RMSE 3.82 3.17 3.18 3.23 2.90 2.52 2.76 2.76 3.44

DIC −1517 −1548 −1556 −1561 −1593 −1621 −1603 −1594 −1565

GCV 2.78 2.64 2.62 2.60 2.50 2.43 2.44 2.48 2.60
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