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Abstract—Non-Negative Matrix Factorization (NMF) is a 
powerful dimensionality reduction and factorization method that 
provides a part-based representation of the data. In the absence 
of a priori knowledge about the latent dimensionality of the data, 
it is necessary to select a rank of the reduced representation. 
Several rank selection methods have been proposed, but no 
consensus exists on when a method is suitable to use. In this 
work, we propose a new metric for rank selection based on 
imputation cross-validation, and we systematically compare it 
against six other metrics while assessing the effects of data 
properties. Using synthetic datasets with different properties, our 
work critically evidences that most methods fail to identify the 
true rank. We show that properties of the data heavily impact the 
ability of different methods. Imputation-based metrics, including 
our new MADimput, provided the best accuracy irrespective of 
the data type, but no solution worked perfectly in all 
circumstances. One should therefore carefully assess 
characteristics of their dataset in order to identify the most 
suitable metric for rank selection.  

Keywords— non-negative matrix factorization, rank selection, 
cross-validation. 

I. INTRODUCTION  
Large multivariate datasets are commonplace in research as 

well as industry, and it is often crucial to identify latent 
components that underlie the data. For example, one may aim 
at creating new features that compress the original information 
and reduce noise, or one may aim at finding interpretable non-
redundant factors to gain insights into the structure of the data. 
Unsupervised methods are often employed for obtaining such 
factors and several options exist, e.g. principal components 
analysis (PCA) and non-negative matrix factorization (NMF). 
There is usually no a priori knowledge available about the true 
dimensionality of the data. Therefore, independently of which 
factorization method is used, it is necessary to select the 
dimensionality (or rank) of the reduced data. We define this 
issue as rank selection problem, as it ultimately results in 
having to select the rank of the reduced representation that best 
captures structure and ignores noise.  

Matrix factorization provides a unified framework for 
clustering, factorization and feature construction [1]. All these 
tasks, in fact, can be represented as a low-rank matrix 
approximation, in which the original data is represented as 

multiplication of two or more low-rank matrices. Singular 
value decomposition (SVD) and closely related principal 
components analysis (PCA) are popular methods that constrain 
the factors to be orthogonal. Non-negative Matrix Factorization 
(NMF) represents non-negative data V as a product of two 
matrices W and H that are constrained to be non-negative.  
NMF derives factors that group elements into parts that are 
additive, and are often notably sparser and more interpretable 
than the ones derived with other methods like SVD and PCA 
[2]. These features of NMF have made it increasingly popular 
for dimensionality reduction with important applications in text 
mining and natural language processing [3][4], image 
processing [2][5], signal decomposition and source separation 
[6][7], genetics [8][9], and neuroscience [10]–[13], among 
others. 

However, for a given data how to optimally select the 
number of factors or rank in NMF is still an unsolved question. 
Several methods have been proposed for solving the rank 
selection problem (see section II), but the advantages and 
limitations of different methods are still unknown due to lack 
of systematic comparison. For instance, characteristics of the 
data like sparseness might affect rank selection methods. No 
previous study yet has explored such effects on rank selection. 
Another motivation for our work was the consideration that 
most NMF rank selection methods are based on the stability of 
the NMF solutions. However, stability does not necessarily 
imply accuracy. For instance, a trivial factorization method that 
returns some fixed factors would be highly stable across runs, 
but it would not yield a useful reduced representation of the 
data, as it would overfit. Nonetheless, stability based methods 
would favor such solutions. Although such extreme behavior is 
unlikely in real scenarios, it is not unlikely that similar biases 
could impact rank selection methods. 

In this paper, we explicitly address these issues by 
systematically comparing several rank selection methods on a 
large number of datasets with two different data generation 
strategies. We also propose a new rank selection method that is 
based on the strategy commonly used for evaluating supervised 
methods. In supervised settings, the choice of the best model is 
generally done via cross-validation (CV) in which part of the 
data are held-out and used to validate the model induced on 
rest of the original data [14]. Evaluation of held-out data  
provides an estimate of the ability of the model to generalize.  
This feature is highly desirable in NMF applications in which 
one might want to identify a factor structure that is stable and This study was partly supported by the Helmholtz Portfolio Theme 
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replicable on new samples.  CV can be applied to factorization 
methods, such as PCA, if appropriately designed [15] and to 
date several such attempts have been carried out for NMF 
[16]–[18].  

Taken together, in this work we make three main 
contributions: (1) we provide the first systematic comparison 
of several NMF rank selection methods; (2) we analyze for the 
first time the effect of different properties of the data on rank 
selection; (3) we propose a new CV-based rank selection 
metric that can potentially overcome limitations of previous 
methods.  

The paper is organized as follows: first we will introduce 
NMF and previously proposed NMF rank selection methods 
(section II); then we will outline imputation CV-based metrics 
including our new metric (section III); we will then describe 
the experimental setup (section IV) and results of the 
experimental testing (V); finally, we will discuss the results 
(section VI) and conclude (section VII).  

II. NON-NEGATIVE MATRIX FACTORIZATION 

A. Algorithm 
NMF is a low-rank approximation method that factorizes a 

non-negative matrix 𝑉𝑉𝑛𝑛×𝑚𝑚 with n observations and m features, 
into two non-negative matrices 𝑊𝑊𝑛𝑛×𝑘𝑘 and 𝐻𝐻𝑘𝑘×𝑚𝑚. This results in 
a part-based decomposition of V into a basis matrix H, 
representing how the m features are structured in k underlying 
factors, and a coefficient matrix W, representing the loadings 
for each of the n observations on the k factors. 

Several algorithms exist for NMF, and numerous variants 
have introduced additional constraints on the factor structure 
[19]. For simplicity and increased comparability, we used  Lee 
and Seung’s [20] multiplicative update rule NMF algorithm 
that aims at minimizing the Euclidean distance between the 
original and reconstructed matrix. Under this formulation, 
NMF can be stated as the following optimization problem: 

‖𝑉𝑉 −  𝑊𝑊𝑊𝑊‖2     𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡  𝑊𝑊 ≥ 0, 𝐻𝐻 ≥ 0 (1) 

And it is solved via the following iterative update rules: 

𝐻𝐻 ← 𝐻𝐻⊙  𝑊𝑊𝑇𝑇𝑉𝑉
𝑊𝑊𝑇𝑇𝑊𝑊𝑊𝑊

         𝑊𝑊 ← 𝐻𝐻⊙  𝑉𝑉𝑉𝑉𝑇𝑇

𝑊𝑊𝑊𝑊𝑊𝑊𝑇𝑇  (2) 

where the ⊙ symbol refers to element-wise multiplication, 
and where the division is a component-wise division between 
the two matrices. Note that in this paper, we factorize m 
features into k factors of interest using the basis matrix H.  

As NMF is sensitive to initialization, for similar reasons of 
simplicity, we employ random initialization on the initial 
values of W and H together with SVD-based initializations 
[21]. 

B. Rank selection methods 
Absence of prior knowledge makes it necessary to identify 

the optimal rank to factorize a given dataset. This is usually 
achieved by performing NMF for a range of ranks, and then 
choosing a rank based on some metric of goodness.  

Currently available metrics for rank selection in NMF can 
be grouped into one of following general approaches: stability 
of NMF-derived clusters across multiple NMF runs [8][22]; 
similarity of NMF factors across halves in a split-half 
validation [12]; relative difference in reconstruction error 
between original matrix and permuted matrix [23]; 
minimization of reconstruction error of held-out values in a CV 
framework [16], [17]; estimators of the mean squared error 
(MSE) [24]; Bayesian methods [25], [26]; and information-
theory based methods [27]. Here, we compare seven methods 
in total, six previously proposed methods and our new method. 

1) Consensus methods 
Consensus methods evaluate consistently with which pairs 

of features get clustered together across multiple NMF runs. 
NMF is computed at a given k and each of the m features are 
assigned to one of the k factors according to their highest 
loading in the H matrix. This yields a binary connectivity 
matrix for each NMF run. By repeating NMF with different 
initializations, a consensus matrix (i.e. average of connectivity 
matrices) is computed. This consensus matrix expresses the 
probability with which pairs of features cluster together. Two 
metrics utilizing the consensus matrix have been proposed as a 
criterion for rank selection: 

1. Cophenetic correlation coefficient (coph) [8] of the 
consensus matrix is calculated, and the rank k at which 
the magnitude of coph “begins to fall” is selected. Here 
we operationalize this procedure by selecting the rank 
with maximum coph. 

2. Dispersion [22] uses the same approach as above, but 
calculates the dispersion coefficient of the consensus 
matrix. The rank with the maximum dispersion is 
selected. 

Note that consensus methods have been criticized in [23], 
because they do not evaluate the factors themselves, but rather 
they evaluate the ability of the NMF to identify stable clusters. 

2) Similarity in split-half validation 
In these methods, the sample is randomly divided in two 

halves and NMF is computed separately within each half. The 
factors identified in each half are then matched (e.g., via the 
Hungarian algorithm), because NMF factors are not ordered as 
in PCA. This procedure is repeated with different splits, and 
the rank at which the factors are maximally similar on average 
is selected. Similarity between the factors can be computed via: 

1. Inner product [12] between the matched factors is 
calculated and then averaged. 

2. Adjusted Rand Index (aRI). In this case, each of the m 
features is assigned to the factor on which it has 
highest loading. The similarity of the two resulting 
clusterings is then assessed via aRI. 

3) Comparison with permuted matrix (perm)  [23]  
In this approach, a new matrix is constructed by permuting 

the columns (features) of each row independently. NMF is 
computed on this permuted matrix as well as on the original 
matrix on a range of ranks. The slopes of the corresponding 
reconstruction errors with respect to the ranks are compared. 
The rank k is then selected where the slope of the original 



 

matrix is lower than the slope of the permuted matrix. This 
metric is based on the rationale that when the original error 
slope is equal to that of the permuted matrix, no further 
information is gained. 

4) Reconstruction error of imputed held-out values 
Kanagal and Sindhwani [16] proposed to use cross-

validation (CV) with weighted NMF for rank selection while 
presenting a NMF variant that can account for weights. By 
settings some of the weights to 0 these entries are effectively 
held out of the matrix V. Then, weighted NMF is computed on 
the data with these weights. NMF, however, reconstructs the 
entire matrix, thus essentially imputing the values the missing 
values. The reconstruction error is then calculated as the 
Frobenius distance between the original and imputed. The 
rank is selected at the minimum of imputation error.  A similar 
approach is also suggested in the R package NNLM’s vignette 
[18]. This provides a framework similar to CV in supervised 
settings. 

Of note, we exclude from our comparison: Bayesian 
methods [25], [26], due to their complexity and to the required 
assumptions on the choice of the priors associated with the W 
and H matrices; Bi-Cross-Validation [17], as it has already 
been shown inaccurate [16][24]; and the Stein’s unbiased risk 
estimator [24], as it has been criticized for providing 
optimistic estimates [28]. 

III. IMPUTATION CV 
In this section we formalize use of reconstruction error of 

imputed values as a method for rank selection. We also 
propose a new metric which expands on the imputation-based 
rank selection methods presented above (section II.D: [16], 
[18]).  

A. General principles 
Selecting a rank lower than the true rank will lead to poor 

representation of the structure within the data (underfitting), 
while selecting a higher rank would cause the factorization to 
model noise (overfitting). A possible solution to find the right 
balance between under- and overfitting is to adopt cross-
validation, a resampling technique commonly used in 
supervised settings to assess the generalization of a model [14]. 
In a supervised setting, the dataset is partitioned into training 
and validation sets and the model learned from the training set 
is evaluated on the validation set. Higher accuracy on the 
validation set is indicative of a more generalizable model. It is 
fundamental, here, that the model is evaluated in predicting 
data it has not seen before.  

However, entire observations (rows or columns) cannot be 
held-out in matrix factorization due to its unsupervised nature. 
[15]. We can still obtain an independent test sample by holding 
out some randomly selected entries (also referred to as a 
speckled pattern) in the matrix V as missing values. NMF is 
still able to learn structure in the data by considering only the 
available entries. Then, the approximation of the original 
matrix 𝑉𝑉�  =  𝑊𝑊𝑊𝑊 reconstructs the held-out entries, effectively 
imputing the missing values. The imputation error is then 

calculated by comparing the imputed values with the 
corresponding original values. To reduce the variance due to 
the randomness in the choice of missing value locations, it is 
necessary to repeat this procedure multiple times at each rank 
with different missing values. The minimum of the average 
imputation error across multiple runs at each rank is then used 
as criterion for rank selection, since it accounts for the trade-off 
between under- and overfitting. Thus, this method is similar to 
Kanagal and Sindhwani’s approach described above. 

B. New metric: Median Absolute Deviation 
The averaged imputation error, however, does not provide 

the complete information about the reconstruction in different 
parts of the data. For instance, when the factors are 
representative of unequal portions of the data, the average 
imputation error can be low even though a good reconstruction 
is only achieved for a part of the data. This can mislead rank 
selection methods.  

Variance in the imputation error due to different missing 
values can provide additional information, especially about 
relative reconstruction quality in different parts of the data. 
Lower variance indicates equal reconstruction quality in 
different parts of the data and thus the variance should be 
minimal at the true rank. This provides a new metric for rank 
selection which has not been explored yet. Here we estimated 
this variance using a robust estimator median absolute 
deviation (MAD) and call the resulting method MADimput.  

IV. EXPERIMENTAL SETUP 

A. Datasets 
Our aim was to test if the ability of various methods to 

identify the true rank is affected by characteristics of the data. 
We, therefore, created two types of synthetic datasets with 
different structure of the W and H matrices (Figure 1); 

• Dense datasets where the W and H matrices were 
uniformly sampled in the range [0, 1].  

• Sparse datasets where the W and H matrices were 
block-diagonal and non-zero entries were 

sampled uniformly in the range [0, 1]. 

In both cases the W matrix was scaled by 10 and normally 
distributed random noise with mean 0 and standard deviation 1 
was added to the final V matrix. 

 
Fig. 1. Exemplar structure of sparse (A) and dense (B) synthetic 
datasets, at latent components k = 4.  



 

For both types of data, we created 20 different synthetic 
datasets of size 100x50 (observations x features) for five values 
of latent dimensionality {2, 4, 6, 8, 10}, amounting to a total of 
100 datasets per type.  

Moreover, we evaluate the performance of all methods on 
three real datasets:  

1. MED5 (reduced MEDLINE) dataset is a database of 
medical abstracts available from the DTU:NMF 
Toolbox [29], having size 1159 terms by 124 
abstracts, and 5 underlying human-labelled topics. 

2. Dig0246 dataset consists of a subset of the Optical 
Recognition of Handwritten Digits dataset from the 
University of California at Irvine (UCI) repository 
(training sample). It composed of 64 attributes and 
1520 samples representing digits {0, 2, 4, 6}. The 
aim is to separate the digits, thus the true rank is 
four. 

3. ALL-AML dataset [30] is a cancer gene expression 
dataset, containing the gene expression patterns of 
5000 genes obtained in 38 samples (features of 
interest). The samples are either of acute 
lymphoblastic leukemia (ALL), or of acute myeloid 
leukemia (AML) – but further subtyping might be 
possible. The creators of the dataset found the rank 
to be 3 using cophenetic correlation [8]. 

B. Imputation CV implementation 
We used a repeated cross-validation, in which at each 

repetition 10% of the values chosen at random were set to 
missing. The nnmf function in the NNLM package [18] was 
used as it can handle missing values by eliminating them 
before the estimation of W and H. For each rank k, the original 
matrix was reconstructed and the imputation error was 
computed as mean squared error (MSE). We then calculated 
the median (MSEimput) and MAD (MADimput) of the MSE 
values across 100 repetitions. Both metrics select a rank k at 
which their value is minimum. 

C. NMF and methods settings 
As NMF is sensitive to initialization, we ran NMF with 20 

different initializations and selected the solution with the 
lowest reconstruction error. Ten initializations were based on 
uniformly sampled values while the other 10 were based on 
SVD [21]. This initialization strategy was used for all methods 
except for consensus methods as they rely on differences in 
NMF solutions due to initializations.  

We repeated NMF with abovementioned initializations 100 
times at each rank. The median of the corresponding metrics 
across repetitions was used to select the rank. For the 
permutation based method, a single permuted matrix was used. 
All methods were evaluated on ranks from 2 to 15. 

V. RESULTS 

A. Synthetic data 
Experimental results on synthetic data are presented in Fig. 

2 and Table 1. We observed several systematic effects of data 
characteristics and the true rank on the performance of all rank 
selection methods: (1) firstly, it is clear that most of the 
methods tested here fail in the exact identification of the true 
rank; (2) remarkably, none of the methods other than 
imputation CV showed good performance on dense datasets, 
except at true rank of two; and (3) sparse datasets and higher 
true rank caused decreased accuracy for all methods. 

TABLE I.  ACCURACY OF TOP RANK SELECTIONA  

Type True rank MSE MAD perm coph disp aRI 

Dense 

2 0 25 100 95 100 100 
4 70 50 0 25 0 0 
6 100 50 0 0 0 5 
8 100 60 0 0 0 0 

10 100 65 0 0 0 0 
Avg. 74 50 20 24 20 21 

Sparse 

2 100 65 100 100 100 100 
4 100 55 100 50 50 90 
6 100 55 100 35 45 95 
8 80 30 70 35 25 80 

10 30 15 20 30 30 15 
Avg. 82 44 78 50 50 76 

a. inner was excluded from the table as it consistently showed 0 accuracy 

 

Both imputation CV based methods, MSEimput and 
MADimput, were highly accurate for both data types and over 
the whole range of true ranks (Fig. 2, Table I). However, these 
methods did not select the rank perfectly and notably showed 
increasing error at higher true ranks. Specifically, it appears 
that MSEimput is more accurate in selecting the true rank in 
dense datasets, but is less accurate for sparse datasets, 
especially at higher true ranks. MADimput, on the other hand, 
showed moderate accuracy in both sparse and dense datasets. 

 
Fig. 2. Boxplots showing median selected rank on 20 synthetic datasets 
by the seven methods at four different latent components (2, 4, 8 and 
10). For each method, performance in dense and sparse datasets is 
shown; latent k is shown as the green horizontal line. Results with true 
rank of 6 are not shown for brevity but they showed a similar pattern. 



 

Split-half validation with inner product similarity (inner) 
was the overall worst performing method, and consistently 
overestimated the rank. While aRI similarity in split-half 
validation showed a remarkably good performance on sparse 
datasets, it also underestimated the rank of dense datasets with 
equal remarkability. The good performance of aRI can be 
attributed to the match between cluster-like property of the 
sparse data (see Fig. 1) which is then exploited by aRI through 
NMF’s clustering ability. Permutation-based rank selection 
(perm) showed a similar pattern with slight underestimation for 
sparse datasets at higher true ranks. Consensus methods (coph 
and dispersion) tended to underestimate the rank with a much 
higher variability of the estimates on sparse datasets. 

TABLE II.  ACCURACY OF TOP-THREE RANK SELECTIONA  

Type True rank MSE MAD perm coph disp aRI 

Dense 

2 100 85 100 100 100 100 
4 100 95 90 85 70 100 
6 100 100 0 20 25 15 
8 100 95 0 0 20 0 

10 100 100 0 5 60 0 
Avg. 100 95 38 42 55 43 

Sparse 

2 100 100 100 100 100 100 
4 100 95 100 100 100 100 
6 100 100 100 95 100 100 
8 95 75 100 85 95 95 

10 40 45 80 60 75 60 
Avg. 87 83 96 88 94 91 

a. inner was excluded from the table as it consistently showed 0 accuracy 

 

We observed that sometimes local optima of the metrics 
tended to be closer to the true rank. In such cases a user can 
manually select the rank aided by the metrics. To assess the 
impact of local optima, we calculated the top-three accuracies 
considering if any of the top-three optimal ranks for each 
metric matched the true rank (Table II). As we can see, the top-
three accuracy of all methods increased compared with the top-
accuracy, indicating that local optima of all the metrics are 
meaningful and should be taken into account. Interestingly, 
dispersion showed a large increase in the top-three accuracy on 
sparse datasets surpassing many other methods. 

B. Real data 
Results on real datasets confirmed our observations in 

synthetic data and further suggested that more complex data 
properties might affect rank selection in real data. In fact, we 
can see (Figure 3) how for all three real datasets the inner 
product systematically overestimated the rank, while the other 
methods show more diverse and interesting patterns.  

For the MED5 dataset, only coph identified the correct 
rank, perm had the highest error with 12 as the selected rank 
while other methods selected either 3 or 4. 

For the Dig0246 dataset, MADimput, consensus methods 
and aRI converge on the expected 4 latent components; perm 
identified 5 components. The performance of MSEimput was 
puzzling as it selected the highest tested rank of 15. The 
MSEimput monotonously decreased for the whole range of 
ranks tested. More detailed analysis is needed to pinpoint 

reasons behind this bad performance but it is out of scope of 
this work.  

For the ALL-AML dataset, perm and aRI identify the 2 
expected latent components. Consensus methods converge on 
rank of 3, replicating the result of Brunet et al. [8], in which it 
was suggested that 3 components yield a more fine-grained 
interpretation of the data. MADimput and MSEimput both 
identified 5 components as the best representation.  

It should be noted that all three real datasets can be 
expected to have a sparse latent structure, as they are composed 
of relatively distinct groups (even though no clear patterns 
were visible by plotting the data). This can explain the 
accuracy of aRI, and the relatively better performance of 
MADimput and perm as compared to MSEimput. However, 
none of the methods were accurate on all three real datasets. 
Given that consensus methods and aRI performed reasonably 
well on sparse datasets at low ranks (Table I), their apparently 
good performance on real data can be expected. However, their 
performance was more varied than other methods across runs 
and here we chose the best performing run. 

VI. DISCUSSION 
In this paper one of our aims was to systematically compare 

effects of data properties on NMF rank selection methods. 
Towards this end, we tested effects of data characteristic of 
sparsity/orthogonality and a range of true ranks. We also 
proposed use of variance of MSE in imputation CV as a new 
rank selection method.  

Overall, our results provide evidence that most of the 
currently available methods fail in identify the true rank, and 
no method works perfectly for all data types. However, metrics 
based on imputation CV appear to be the more reliable across 
data types, strongly supporting the use of CV for model 
selection in unsupervised settings [14, 15]. The results on 
synthetic datasets showed MSEimput to be more accurate, 
whereas our new method MADimput performed better than the 
rest on dense datasets while also showing good performance 
with sparse datasets. Interestingly MADimput performed better 
than MSEimput on the real datasets, especially the Dig0246 

 
Fig. 3. Results on three real datasets. The method inner was excluded 
due to its bad performance. Each horizontal line shows the 
corresponding expected true rank. 



 

data. Our new method, therefore, seems to capture additional 
properties of the data, albeit with some caveats.  

Our study, for the first time, shows that data characteristics 
can influence the ability of rank selection methods. Critical 
properties of the data identified in this work include 
sparsity/orthogonality and true rank of the underlying 
representation, but it is likely that other characteristics 
influence rank selection ability of all methods. This is evident 
in the performance of different methods in real datasets, in 
which we observed overall similar patterns as in synthetic data. 
However, the performance of many methods, including 
imputation-based methods, worsened in real-world data, which 
might be due to their increased complexity and noise. 

The inability of most methods to correctly identify the rank 
in sparse datasets at higher true ranks is possibly due to the 
presence of dominating factors that influence large portions of 
the data along with some factors that influence only small parts 
of the data (see section IV). Specifically for the average 
imputation error MSEimput, such a data structure can bias the 
MSE estimates towards the dominating factors, effectively 
underestimating the rank (as observed in our results, see Fig. 
2). In-fact, our current sparse data simulation process (adapted 
from the R package NMF, [31]) tends to create imbalanced 
dominance structure when the true rank approaches number of 
features. However, a more detailed analysis is required to 
establish such a relationship which is out of the scope of 
current work. 

VII. CONCLUSION 
In conclusion, even though imputation CV based methods 

seem to be the most promising option for rank selection, 
characteristics of the data should be carefully assessed prior to 
deciding which method to apply for NMF rank selection. We 
have also exposed several potential research directions along 
these lines. Our new method MADimput showed promise on 
both synthetic and real data and will be a valuable addition to 
the existing arsenal of NMF rank selection methods. We 
suggest that a combination of MSEimput and MADimput can 
provide clues about the true rank. Furthermore, exploring 
additional parameters such as number of held-out values is 
another potential future research direction. 

A more thorough investigation of the effect of the above 
mentioned properties along with others like noise level and 
NMF variants is necessary before establishing definitive 
indications on which is the best rank selection method. Our 
analysis suggests that it is likely that different rank selection 
methods might emerge as being more effective pertaining to 
different properties of the data at hand. An example of such an 
effect can be seen for aRI (a method for evaluating similarity 
between two clusterings) based split-half validation, which 
works well only when the underlying representation is cluster-
like. Such aspects can be further investigated via meta-learning 
approaches [32]. 
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