000861443 001__ 861443
000861443 005__ 20220930130208.0
000861443 0247_ $$2doi$$a10.1371/journal.pone.0210570
000861443 0247_ $$2Handle$$a2128/21841
000861443 0247_ $$2pmid$$apmid:30865622
000861443 0247_ $$2WOS$$aWOS:000461048900007
000861443 037__ $$aFZJ-2019-01915
000861443 041__ $$aEnglish
000861443 082__ $$a610
000861443 1001_ $$0P:(DE-Juel1)144199$$aSpringer, Ronald$$b0
000861443 245__ $$aUnbiased pattern analysis reveals highly diverse responses of cytoskeletal systems to cyclic straining
000861443 260__ $$aSan Francisco, California, US$$bPLOS$$c2019
000861443 3367_ $$2DRIVER$$aarticle
000861443 3367_ $$2DataCite$$aOutput Types/Journal article
000861443 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552576674_30129
000861443 3367_ $$2BibTeX$$aARTICLE
000861443 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861443 3367_ $$00$$2EndNote$$aJournal Article
000861443 520__ $$aIn mammalian cells, actin, microtubules, and various types of cytoplasmic intermediate filaments respond to external stretching. Here, we investigated the underlying processes in endothelial cells plated on soft substrates from silicone elastomer. After cyclic stretch (0.13 Hz, 14% strain amplitude) for periods ranging from 5 min to 8 h, cells were fixed and double-stained for microtubules and either actin or vimentin. Cell images were analyzed by a two-step routine. In the first step, micrographs were segmented for potential fibrous structures. In the second step, the resulting binary masks were auto- or cross-correlated. Autocorrelation of segmented images provided a sensitive and objective measure of orientational and translational order of the different cytoskeletal systems. Aligning of correlograms from individual cells removed the influence of only partial alignment between cells and enabled determination of intrinsic cytoskeletal order. We found that cyclic stretching affected the actin cytoskeleton most, microtubules less, and vimentin mostly only via reorientation of the whole cell. Pharmacological disruption of microtubules had barely any influence on actin ordering. The similarity, i.e., cross-correlation, between vimentin and microtubules was much higher than the one between actin and microtubules. Moreover, prolonged cyclic stretching slightly decoupled the cytoskeletal systems as it reduced the cross-correlations in both cases. Finally, actin and microtubules were more correlated at peripheral regions of cells whereas vimentin and microtubules correlated more in central regions.
000861443 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000861443 588__ $$aDataset connected to CrossRef
000861443 7001_ $$0P:(DE-Juel1)128843$$aZielinski, Alexander$$b1
000861443 7001_ $$0P:(DE-Juel1)157714$$aPleschka, Catharina$$b2
000861443 7001_ $$0P:(DE-Juel1)128817$$aHoffmann, Bernd$$b3$$ufzj
000861443 7001_ $$0P:(DE-Juel1)128833$$aMerkel, Rudolf$$b4$$eCorresponding author
000861443 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0210570$$gVol. 14, no. 3, p. e0210570 -$$n3$$pe0210570 -$$tPLOS ONE$$v14$$x1932-6203$$y2019
000861443 8564_ $$uhttps://juser.fz-juelich.de/record/861443/files/journal.pone.0210570.pdf$$yOpenAccess
000861443 8564_ $$uhttps://juser.fz-juelich.de/record/861443/files/journal.pone.0210570.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861443 8767_ $$8PAB238492$$92019-03-05$$d2019-03-22$$eAPC$$jDeposit$$lDeposit: PLoS$$pPONE-D-18-06136$$z1495 USD
000861443 909CO $$ooai:juser.fz-juelich.de:861443$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000861443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144199$$aForschungszentrum Jülich$$b0$$kFZJ
000861443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128817$$aForschungszentrum Jülich$$b3$$kFZJ
000861443 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128833$$aForschungszentrum Jülich$$b4$$kFZJ
000861443 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000861443 9141_ $$y2019
000861443 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861443 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000861443 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000861443 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000861443 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000861443 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2017
000861443 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000861443 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000861443 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861443 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861443 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861443 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861443 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000861443 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861443 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861443 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000861443 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861443 920__ $$lyes
000861443 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$kICS-7$$lBiomechanik$$x0
000861443 9801_ $$aFullTexts
000861443 980__ $$ajournal
000861443 980__ $$aVDB
000861443 980__ $$aUNRESTRICTED
000861443 980__ $$aI:(DE-Juel1)ICS-7-20110106
000861443 980__ $$aAPC
000861443 981__ $$aI:(DE-Juel1)IBI-2-20200312