
PHYSICAL REVIEW B 97, 085141 (2018)

Effective masses, lifetimes, and optical conductivity in Sr2RuO4 and Sr3Ru2O7: Interplay
of spin-orbit, crystal-field, and Coulomb tetragonal tensor interactions

Esmaeel Sarvestani,1 Gouren Zhang,1 Evgeny Gorelov,1,2 and Eva Pavarini1,3,4

1Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
2European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany

3JARA High-Performance Computing, RWTH Aachen University, 52062 Aachen, Germany
4JARA FIT, RWTH Aachen University, 52062 Aachen, Germany

(Received 21 July 2017; revised manuscript received 10 January 2018; published 21 February 2018)

By using the local-density approximation + dynamical mean-field theory approach, we study the low-energy
electronic properties and the optical conductivity of the layered ruthenates Sr2RuO4 and Sr3Ru2O7. We study the
interplay of spin-orbit, crystal-field, and Coulomb interactions, including the tetragonal terms of the Coulomb
tensor. We show that the spin-orbit interaction is multifaced; depending on the parameter regime, filling, and
temperature, it can either enhance or reduce the effective strength of correlations. We compare the results
based on the two common approximations for the screened Coulomb parameters, the constrained random-phase
approximation (cRPA) and the constrained local-density approximation. We show that the experimental Drude
peak is better reproduced by the cRPA parameters, hinting to relatively small mass renormalizations. We find
that including the spin-orbit interaction is, however, important, for a realistic description. We show that Coulomb
terms with tetragonal D4h symmetry have a strong effect on the mass-enhancement anisotropy, but they do not
affect sizably the total spectral function or the in-plane conductivity.
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I. INTRODUCTION

The Ruddlesden-Popper perovskites Sr2RuO4 and
Sr3Ru2O7 have exceptional electronic and magnetic
properties, the first system being a possible realization
of a p-wave superconductor [1–3] and the second displaying
signatures of quantum-critical phenomena and nematic fluid
behavior [4–6]. They are built of tetragonally elongated RuO6

octahedra forming layers; the latter repeat along the c axis,
separated by a distance and alternately shifted parallel to
the ab plane; in Sr2RuO4 the octahedra form single-layer
and in Sr3Ru2O7 (Fig. 1) double-layer blocks. Due to their
remarkable properties, these materials have been studied for
decades [1–42].

Theoretically, the Ruddlesden-Popper ruthenates are espe-
cially intriguing because several competing interactions have
similar strength. In such a situation it can become a challenge
to disentangle the key mechanisms from the rest; indeed, our
understanding of these materials was revised various times in
the last decades. Due to the perovskite structure, the low-energy
states have mostly Ru 4d t2g character, with nominal configura-
tion t4

2g; the tetragonal (D4h) distortion splits the t2g states into
a lower-energy xy singlet and a higher-energy (xz,yz) doublet;
the crystal-field splitting εCF = εxz/yz − εxy is small, however.
The layered structure yields rather different bandwidths for the
xy and (xz,yz) electrons, with Wxy > Wxz/yz. As first guess,
one could naively think that 4d systems of this kind are already
well described by density-functional theory in the local-density
approximation. Ruthenates, however, surprise in many ways.
Already early calculations based on dynamical mean-field
theory suggested that they should be regarded as correlated
systems [7]. Recent ab initio estimates of the average screened

Coulomb repulsion [8,9] show that the latter is comparable
with the t2g bandwidth, supporting the view of Sr ruthenates
as correlated metals. Furthermore, experimentally, it has been
found that when Sr is replaced by the isoelectronic Ca, the
single-layered ruthenate becomes a Mott insulator below a
critical temperature [11]. Later on, it was understood that the
small crystal-field splitting εCF and the bandwidth mismatch
Wxz/Wxy ∼ 0.5 in Ca2RuO4 are key to explain this Mott tran-
sition [12,13]. Finally, in the last years it has been pointed out
the remarkable role of the Hund’s rule coupling J in enhancing
the effective masses, thus making the ruthenates strongly
correlated. This led to reclassify these systems as Hund’s
rather than Mott’s metals [14]. Furthermore, an incoherent
regime with quasilinear dependence of the scattering rate
was identified [8]. Experimentally, sizable effective masses
have been reported in Sr2RuO4 [3,15–17], and even larger
in Sr3Ru2O7 [18,19]. All these works have clarified essential
aspects of the physics of the ruthenates, but others remain not
fully understood, in particular, the effect of two interactions,
the spin-orbit coupling and of tetragonal Coulomb terms, small
but comparable with the crystal-field splitting and the hopping
integrals.

It has been shown that already at the level of density-
functional theory in the local-density approximation (LDA),
the spin-orbit (SO) interaction plays a key role at the Fermi sur-
face [20–22]. Accounting for the spin-orbit interaction within
material-specific many-body models has been theoretically a
challenge for a long time, in particular due to the infamous
sign problem of quantum Monte Carlo (QMC) solvers for
dynamical mean-field theory. Recently, we have generalized
the continuous-time interaction-expansion (CT-INT) QMC
solver to Hamiltonians of any symmetry, including the spin-
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FIG. 1. The crystal structure of the double-layered ruthenate
Sr3Ru2O7. The RuO6 octahedra forming the layers are slightly
elongated and the cubic Sr cages slightly compressed along the c
direction.

orbit interaction and general Coulomb vertex; in the cases
we studied, we could improve computational efficiency via
appropriated basis choices [23,24]; the sign problem remains
manageable in all calculations we performed so far. By using
this approach, we have shown that, for a proper description
of the Fermi surface of Sr2RuO4 it is necessary to include the
rotationally invariant [O(3)-symmetry] part of the Coulomb
interaction plus the spin-orbit interaction. This is not suffi-
cient, however. Small Coulomb terms with tetragonal (D4h)
symmetry [23] turn out to be essential. The natural question
that arises is if these effects and their interplay are crucial only
at the Fermi surface, where the right symmetry is key, or if
they also appear in different properties and at higher energies,
and can be detected in other types of experiments. In that
respect, photoemission spectra, effective-mass measurements,
and optical conductivity experiments are particularly important
because they are typically used in comparing theory and

experiments, and in particular to estimate the actual strength
of the Coulomb terms or the validity of a given method and
approximation.

In this paper, we thus reanalyze the correlated electronic
structure of single- and double-layered ruthenates in the light
of these new insights. We do this treating on the same
footing and within the same calculation scheme all rele-
vant competing interactions: the crystal-field splitting, the
hopping integrals, spin-orbit interaction, and the Coulomb
vertex, including low-symmetry terms with tetragonal (D4h)
symmetry. In particular, we examine low- and intermediate-
energy properties such as effective masses and lifetimes, t2g

spectral functions, and optical conductivity. In addition, we
compare results obtained with screened Coulomb parameters
determined via the constrained random-phase approximation
(cRPA) [8], which often underestimates the Coulomb parame-
ters, and the constrained local-density approximation approach
(cLDA) [9], which typically overestimates the Coulomb pa-
rameters, in order to identify which of these two typically
adopted schemes yields more realistic values for layered
ruthenates.

The paper is organized as follows. In Sec. II we describe
the model and the approach we adopt, the LDA+DMFT
method. In particular, we discuss how we deal with the spin-
orbit terms using the continuous-time interaction-expansion
quantum Monte Carlo method in a t2g Wannier basis, and
how we calculate the optical conductivity tensor. In Sec. III
we present the results. For O(3)-symmetric Coulomb tensor,
cRPA parameters and without spin-orbit coupling our results
are in line with previous works [8,23,25]. We discuss how the
effective masses are modified by the spin-orbit interaction, and
how the nonspherical Coulomb terms affect the effective-mass
orbital anisotropy. We show that in order to describe the optical
conductivity measurements it is important to account for the
spin-orbit interaction. We show that in average quantities
(e.g., the total spectral function) the effects of Coulomb
tetragonal terms are minor. They are, however, very important
for the mass-enhancement anisotropy, determining an orbital-
dependent band narrowing [31], and for the out-of-plane
conductivity. We show that overall the cRPA parameters yield
results in better agreement with currently available optical
conductivity experiments and reported effective masses; the
proper description of effective-mass anisotropy improves,
however, if we explicitly account also for D4h Coulomb terms.
In Sec. IV we give our conclusions. Technical details of the
calculations are explained in the Appendices.

II. MODEL AND METHOD

In order to calculate the electronic and transport properties
of layered ruthenates, we use the local-density approximation
plus dynamical mean-field theory (LDA+DMFT) approach
[43]. First, we calculate the electronic structure in the local-
density approximation (LDA) by using the full-potential lin-
earized augmented plane-wave method as implemented in
WIEN2K code [44]. Then, via the maximally localized Wannier
function method [45,46] and t2g projectors, we construct
localized t2g-like Wannier functions centered at Ru atoms
spanning the t2g bands. Using these Wannier orbitals we build
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the t2g Hubbard Hamiltonian

H = −
∑
ii ′σσ ′

∑
mm′

t ii
′

mσ,m′σ ′ c
†
imσ ci ′m′σ ′

+1

2

∑
iσσ ′

∑
mm′pp′

Umm′pp′c
†
imσ c

†
im′σ ′cip′σ ′cipσ − Hd.c., (1)

where cimσ (c†imσ ) annihilates (creates) an electron at lattice
site i with spin σ ∈ {↑ , ↓} and orbital quantum number
m ∈ {xy,yz,xz}. The one-electron terms −t ii

′
mm′ yield hopping

integrals (i �= i ′) and the crystal-field matrix (i = i ′). We
calculate the noninteracting Hamiltonian both without (LDA)
and with (LDA+SO) spin-orbit interaction. For what concerns
the second case, the onsite part of the spin-orbit term takes the
form

HSO =
∑
iμ

∑
mσm′σ ′

λμε
iμ

mσm′σ ′c
†
imσ cim′σ ′ ,

where μ = x,y,z, and

ε
iμ

mσm′σ ′ = 〈mσ |si
μliμ|m′σ ′〉.

We extract the spin-orbit couplings by comparing the LDA
and LDA+SO Hamiltonians. By ordering the basis as
|xy〉↑,|yz〉↑,|xz〉↑,|xy〉↓,|yz〉↓,|xz〉↓, the onsite crystal-field
matrix εmσ,m′σ ′ = −t iimσ,m′σ ′ for Sr2RuO4 (Ru site symmetry
D4h) and Sr3Ru2O7 (Ru site symmetry C2) can be then
expressed as

ε=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εxy 0 0 0 λy

2 − iλx

2

0 εyz
δz+iλz

2 − λy

2 0 0

0 δz−iλz

2 εxz
iλx

2 0 0

0 − λy

2 − iλx

2 εxy 0 0
λy

2 0 0 0 εyz
δz−iλz

2
iλx

2 0 0 0 δz+iλz

2 εxz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The diagonal terms are εxz, εyz, and εxy , where εxy = (εxz +
εyz)/2 − εCF, and where εCF is the crystal-field splitting in
the absence of spin-orbit interaction; the couplings λx and
λy are the spin-orbit matrix elements between xy and xz/yz

orbitals and λz between yz and xz orbitals. For Sr2RuO4,
the system with space group I4/mmm and in which the Ru
site symmetry is D4h, εxz = εyz, δz = 0, and εCF = 121 meV;
the tetragonal anisotropy of the spin-orbit couplings is small,
i.e., the LDA values are λx = λy = λxy = 100 meV and λz =
102 meV. For Sr3Ru2O7, the symmetry of Ru sites is in
principle lower (space group Ccca [47], Ru site symmetry
C2). In practice, however, the Ru site has C4 symmetry with
tiny C2 distortions; the C2 splitting, εxz − εyz ∼ 1 meV, is
negligible and the same is true for δz ∼ 2 meV. The spin-orbit
couplings are close to the Sr2RuO4 values, with λx − λy ∼ 0,
so that in the discussion we can use as parameters the average
λxy = (λx + λy)/2, and λz = 106 meV, λxy = 102 meV. The
crystal-field splitting is εCF = 109 meV. In both systems
we find that the spin-orbit interaction affects mostly the
onsite elements of the Hamiltonian. The terms Umm′p′p are
elements of the screened Coulomb interaction tensor. In the

O(3)-symmetric case, these elements can be expressed as a
function of the Slater integrals F0, F2, and F4. For t2g states,
the essential terms [43] are the direct [Umm′mm′ = Um,m′ =
U − 2J (1 − δm,m′ )] and the exchange (Umm′m′m = J ) screened
Coulomb interaction, the pair-hopping (Ummm′m′ = J ) and the
spin-flip term (Umm′m′m = J ). In these expressions we used the
relations U = F0 + 4

49 (F2 + F4) and J = 1
49 (3F2 + 20

9 F4), as
appropriate for t2g states [43]. For site symmetry D4h or C4,
the number of independent Coulomb parameters increases to
six. In this work we will discuss in particular the effect of
�U = Uxy,xy − Uxz,xz and �U ′ = Uxy,yz − Uxz,yz, the most
important terms. For Sr2RuO4, as already mentioned, the
essential Coulomb integrals have been estimated ab initio
both via the cLDA [9] and the cRPA approaches [8]. The
first estimate yields U = 3.1 eV and J = 0.7 eV and the
latter U = 2.3 eV and J = 0.4 eV. For Sr3Ru2O7, given the
strong similarities between the two materials, in the lack of
more specific estimates, we adopt the same values. The term
Hd.c. is the double-counting correction. For an O(3)-symmetric
Coulomb interaction, Hd.c. is a mere shift of the chemical
potential; in the presence of low-symmetry Coulomb terms,
the double-counting correction plays an important role. Here,
we adopt the around-mean-field approximation for dealing
with low-symmetry terms (the explicit form of Hd.c. is derived
in Appendix C); this approximation is particularly suited for
studying strongly correlated metals which exhibit in LDA
negligible orbital polarization, as it is the case for layered Sr
ruthenates.

We solve the Hamiltonian (1) with DMFT using continuous-
time interaction-expansion (CT-INT) quantum Monte Carlo
[13,48,49], explicitly including the spin-orbit coupling [23].
We perform calculations with a 6 × 6 self-energy matrix
�mσ,m′σ ′(ω) in spin-orbital space. More specifically, we use the
general implementation of CT-INT presented in Ref. [13] and
extended to explicitly include the spin-orbit (SO) interaction
in the solver in Ref. [23]. The choice of the one-electron
basis influences the sign problem and numerical efficiency,
as we have previously shown for the case of low-symmetry
perovskites in the absence of spin-orbit interaction [50]. Here,
the LDA+DMFT calculations with SO coupling are performed
in the basis |m̃〉σ = T̂ |m〉σ , where the unitary operator T̂

is chosen such that the local imaginary-time Green function
matrix is real; since T̂ only changes the phases but does not mix
orbitals, in the discussion we will rename for simplicity |m̃〉σ as
|m〉σ . For Sr2RuO4 (D4h symmetry), the transformation merely
amounts to an extra (−1)σπ/2 phase for the |xz〉σ orbital;
as it can be shown by using group theory (details are given
in Appendix B), this is an exact procedure. For Sr3Ru2O7

(C2 symmetry), the xz and yz orbitals can in principle mix;
however, since the Ru site has almost C4 symmetry, as we
already pointed out, the C2 mixing is tiny and the optimal
phase transformation is very close to the one for Sr2RuO4.

The conductivity tensor Re σαα′ (ω) can be expressed as
follows:

Re σαα′ (ω) = − Im χαα′ (ω + i0+)

ω
,

where the label α = a,b,c indicates the direction. We obtain
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the current-current correlation function

χαα′ (iωn) = h̄e2

βV

∑
kp

Tr ξk
α,α′ (iωn,iνp),

ξk
α,α′ (iωn,iνp) = [vk]α Gk(iωn + iνp) [vk]α′ Gk(iνp)

on the Matsubara axis; hence, here ωn are bosonic and
νp fermionic Matsubara frequencies, V is the volume, β =
1/kBT the inverse temperature, and Gk(iνp) the Green-
function matrix. The trace (Tr in the formula) is over spin-
orbital degrees of freedom. The elements vk

mσ,m′σ ′ of the
velocity matrices vk are calculated in the same Wannier basis
in which the LDA+DMFT calculations are performed. The
point group of layered ruthenates includes inversion symmetry,
hence, the one-electron part of the t2g Hamiltonian is even
in k,H−k

mσ,m′σ ′ = H k
mσ,m′σ ′ , while the velocity matrix is odd,

v−k
mσ,m′σ ′ = −vk

mσ,m′σ ′ ; thus, the local-vertex contribution to the
current-current response function, which involves sums over
k of the velocity matrix times an even function, vanishes. We
perform the analytic continuation on the conductivity directly
by using the f -sum rule to calculate the normalization factor.
We employ two different analytic continuation methods, the
maximum entropy method [51] and the stochastic approach
of Mishchenko [52], obtaining very similar results. Finally, to
better analyze the results we additionally calculate the con-
ductivity via a different approach. In the latter, we first obtain
the self-energy on the real axis; to this end, we perform the
analytic continuation of the auxiliary Green-function matrix
G̃(iνp) = 1/[iνp + μ̃ − �(iνp)], where μ̃ is fixed such that
the number of electrons is Ne = 4; we obtain the real part
of the Green function from the imaginary part by using the
Kramers-Kronig relation. The conductivity is then obtained as

Re σαα′ (ω) = h̄e2
∫

dω′ f (ω + ω′) − f (ω′)
ω

Tαα′ (ω,ω′),

where f (ω) is the Fermi function and

Tαα′ (ω,ω′) = π

V

∑
k

Tr([vk]αA(k,ω + ω′)[vk]α′A(k,ω′))

is the transport function. The term A(k,ω′) is the spectral-
function matrix and the trace is always over the six spin-
orbital degrees of freedom. We find that the results of the two
approaches are overall very similar.

III. RESULTS

A. Spectral function and quasiparticle masses

Let us start by analyzing the total spectral function of
Sr2RuO4. This is shown in Fig. 2 for the two sets of in-
teraction parameters, the one obtained via cLDA and the
one calculated via cRPA. The differences between the results
for the two parameter sets appear mostly in the position of
the lower Hubbard band and the low-energy properties. The
comparison with available photoemission and x-ray absorption
spectroscopy experiments [9,53–55] yields relatively good
agreement in both cases, and, alone, does not allow a clear-cut
discrimination between results obtained via the cRPA and the
cLDA Coulomb parameter sets. The same conclusion can be
reached for Sr3Ru2O7 [54–57]. In order to determine which
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FIG. 2. Total t2g spectral function of Sr2RuO4 calculated with the
LDA+SO+DMFT approach for cLDA (dark line) and cRPA (light
line) screened Coulomb parameters at temperature T = 290 K. The
total LDA+SO density of states (all bands included) is also shown
(dashed line). The chemical potential is set as the energy zero.

set of parameters is more realistic, we have to compare theory
and experiments for additional properties; we will thus come
back to this point at the end of the paper. In this section, we
present results for both parameter sets.

Figure 3 shows the orbital-resolved mass enhancement
m∗/m ∼ 1/Z and the quasiparticle scattering rate obtained
as � = −2Z Im �(iω0), in a wide range of temperature and
for both Sr2RuO4 and Sr3Ru2O7; these calculations have been
performed using an O(3)-symmetric Coulomb vertex, with
and without spin-orbit coupling. Previous calculations with
cRPA parameters and no spin-orbit interaction [8] are in line
with our results for the same case. It is important to point out
that, switching from the cRPA to the cLDA parameter set, not
only places the two systems sizably more inside the strong-
correlation region, but it also yields a larger mass-enhancement
anisotropy, defined as RM = ( m∗

m
)xy/( m∗

m
)xz/yz; we find that the

latter increases by decreasing temperature. Figure 3 shows in
addition that, on lowering the temperature down to 150 K, the
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FIG. 3. Temperature dependence of the mass enhancement and of
the effective quasiparticle scattering rate for Sr2RuO4. Full symbols:
LDA+SO+DMFT results. Empty symbols: LDA+DMFT results.
Squares: results for xz/yz orbitals. Circles: results for xy orbitals.
Triangles: analogous results for Sr3Ru2O7.
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FIG. 4. Orbital-resolved spectral function per Ru and spin
for Sr2RuO4 and Sr3Ru2O7, calculated with LDA+DMFT and
LDA+SO+DMFT at T = 290 K for the cRPA and the cLDA sets
of interaction parameters. Dark line: xy orbital. Light line: xz/yz

orbital. Black dots: average.

spin-orbit interaction reduces the effective masses but not so
much RM ; the effect is stronger in the calculations based on
the cLDA parameter set, for which U is larger and the atomic
excited S = 0 multiplet is higher in energy. The scattering
rates are, instead, similar in all the cases we consider since the
parameter dependence of Z and Im �(iω0) largely compensate
each other; for the same reason, they are also very similar in the
single-layered compound Sr2RuO4 and in the double-layered
system Sr3Ru2O7.

Figure 4 shows the orbital-resolved spectral functions of
Sr2RuO4 and Sr3Ru2O7 at T = 290 K. For Sr2RuO4, the xy

and xz/yz quasiparticle peaks are suppressed increasing the
Coulomb interaction parameters from (U,J ) = (2.3,0.4) eV to
(U,J ) = (3.1,0.7) eV. Switching on the spin-orbit interaction
yields only small changes in the spectral functions. In the case
of Sr3Ru2O7, the spectral function is more orbital isotropic than
in Sr2RuO4, both with and without spin-orbit interaction. This
is reflected in the larger isotropy of the mass enhancement, that
can be observed in Fig. 3. Finally, the effect of the spin-orbit
interaction turns out to be different at low and intermediate
energies; at intermediate energy, it slightly increases the
bandwidth renormalization.
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FIG. 5. Difference �El
g = El

g(λ) − E0
g(0) in the atomic limit for

λxy = λz = λ; here,El
g(λ) is the gap associated with the lth eigenvalue

of the atomic Hamiltonian for four electrons. Dark circles: l = 0
(ground state). The point at which the line crosses the zero moves
to higher energy when εCF increases. Empty circles: excited doublet
(l = 1). Gray symbols: next excited energies. Calculations were
performed both for the cLDA (large symbols) and the cRPA (small
symbols) parameters. Lines: results from the approximate formula
described in the text.

Our results indicate that, indeed, in systems as the ruthen-
ates, in which the strength of the spin-orbit coupling is
comparable with the crystal-field splitting and the hopping in-
tegrals, the actual effect of the spin-orbit interaction is strongly
dependent on details and the energy scales. This can be seen
already in the atomic case, i.e., if we set the hopping integrals
to zero. In such a limit we can calculate the gap analytically in
the approximation in which only the lowest multiplet is taken
into account, and couplings to higher-energy multiplets via
the spin-orbit interaction are neglected (see Appendix D). This
approximation is valid for spin-orbit couplings small compared
to the Hund’s rule coupling J , hence, it is slightly better suited
for the cLDA than for the cRPA parameter set. In this limit, at
T = 0 the atomic gap is given by E0

g = E0(N + 1) + E0(N −
1) − 2E0(N ), where E0(N ) is the energy of the ground state for
N electrons. Furthermore, the energies of the many-body states
in the lowest-energy multiplet can be expressed as El(N ) =
EU,J (N ) + εl(N ), where EU,J (N ) depends only on U and J ,
and εl(N ) only on the spin-orbit couplings and the crystal-field
splitting (see Appendix D). If we order the states such that
εl+1 > εl , the zero-temperature gap takes then the simple form

E0
g ∼ U − 3J + ε0(5) + ε0(3) − 2ε0(4),

where ε0(3) ∼ 2εCF and

ε0(5) ∼ 4εCF −
(
εCF + λz

2

) +
√(

εCF + λz

2

)2 + 2λ2
xy

2
,

ε0(4) ∼ 2εCF +
(
εCF − λz

2

) −
√(

εCF − λz

2

)2 + 2λ2
xy

2
.

Figure 5 shows the T = 0 atomic gap (l = 0 plots) for
isotropic spin-orbit couplings. For realistic values of λ, the
exact result, obtained by diagonalization of the full atomic
Hamiltonian (circles), is close to that obtained from the approx-
imate expression given above (full line). Figure 6 shows the
exact T = 0 atomic gap for anisotropic spin-orbit couplings.
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FIG. 6. The difference �E0
g = E0

g(λz/2,λxy/2) − E0
g(0,0),

where E0
g(λz/2,λxy/2) is the T = 0 atomic limit gap in the presence

of spin-orbit coupling. The four panels show the results for different
values of the crystal-field splitting εCF. The light line shows the
contour at which �E0

g changes sign from negative (left-hand side
of the line) to positive (right-hand side). For εCF = 0 or in the large
λ = λz = λxy limit, �E0

g > 0. The calculations have been performed
for cLDA Coulomb parameters; results with cRPA parameters are
similar.

As it can be seen in the figure, the spin-orbit interaction,
depending on the parameters, either reduces or enhances
the gap; in particular, when δ = λz − λxy > 0, if the crystal
field is large enough, the gap is reduced by the spin-orbit
interaction, while if λxy is much larger than λz, the gap always
increases. For crystal-field splitting and spin-orbit couplings
corresponding to the cases of Sr2RuO4 and Sr3Ru2O7, the
parameters are very close to the contour line at which the sign
changes, and δ ∼ 2–4 meV is small but positive. In addition,
the three lower-energy N = 4 states are almost degenerate and
thus form a quasitriplet, so that the effective degeneracy does
not change; the energy difference between the ground state and
the excited doublet is �1 = E1(N ) − E0(N ) ∼ 30 meV for
Sr2RuO4 and slightly larger in Sr3Ru2O7, hence, the excited
doublet is occupied for temperatures above 300 K. This can
be inferred from Fig. 5, which shows, aside from the T = 0
gap, the differences El

g(λ) − E0
g(λ = 0) for l > 0, where El

g =
E0(N + 1) + E0(N − 1) − 2El(N ) can be expressed as

El
g ∼ U − 3J + ε0(5) + ε0(3) − 2εl(4) = E0

g − 2�l.

This yields the atomic gap when the excited state El(N ) is
thermally populated, with weight e−�l/kBT . For l = 1,

ε1(4) = 2εCF +
εCF −

√
ε2

CF + λ2
xy

2
.

Figure 5 shows that �1 increases with increasing spin-orbit
coupling λ, and eventually becomes very large compared
to kBT . However, at room temperature, for a realistic λ ∼
100 meV, we have �1 ∼ kBT and the atomic Green function
poles corresponding to l = 1 have a sizable weight. Hence,

already in the atomic limit, the effect of the spin-orbit interac-
tion, both in terms of gap and effective degeneracy, is sensitive
to the model details and temperature/energy scale.

Switching on the hopping integrals, in Sr2RuO4, both
in the absence and presence of SO interaction the system
shows negligible orbital polarization p, with p = nxy − (nxz +
nyz)/2, despite the relative large crystal-field splitting. This
happens because the kinetic energy gain compensates, due to
the layered structure, the crystal-field energy loss coming from
the occupation of the high-energy N = 4 multiplets. In order
to understand this effect, it is sufficient to calculate the sum
of the crystal-field energy loss and the superexchange energy
gain per site for xy orbital order, in the small t/U limit. Let us
consider a site and a cluster made of its four nearest neighbors;
in the atomic limit, its energy is 10εCF when all sites are in the
atomic ground state. The super-exchange energy gain yields

�EOOxy ∼ −4t2
xz

u
,

where u = 2/[1/U + 1/(U + 2J )] and txz = tyz the hopping
among xz (or yz) orbitals on neighboring sites. This formula
shows that switching on the hopping integrals stabilizes xy

orbital order. The energy gain is small, however, because it
involves excitations to doubly occupied states with average
energy U + J . If the hopping integrals are large enough,
however, a state corresponding to xy orbital order will be-
come eventually degenerate with arrangements that involve
an alternation of xy and xz orbitally ordered sites, as can
be seen by diagonalizing exactly a two-site t2g Hubbard
model. The maximum superexchange energy gain associated
to such a configuration is obtained for the ferromagnetic spin
arrangement. It yields the energy difference

�EOOxz/yz,xy ∼ 10

4
εCF − 4t2

xy + 2t2
xz

U − 3J
.

For sufficiently large hopping integrals, the superexchange
energy gain is strong enough to overcome the energy loss due to
the extra crystal-field energy. If the energy difference between
configurations is comparable with kBT , orbital fluctuations are
strong and no orbital polarization is observed. This happens
in the case of the ruthenates, where the kinetic and potential
energy is large and the system remains metallic. For Sr2RuO4,
the nearest-neighbor hoppings are, e.g., txy ∼ 379 meV and
txz = tyz ∼ 292 meV; in the limit in which the local Coulomb
interaction is negligible (LDA), the positive crystal-field split-
ting is overcompensated by the smaller xz/yz bandwidth,
yielding a tiny but slightly negative orbital polarization p. This
remains true also in the presence of spin-orbit interaction.

Recently, it has been understood that the Hund’s rule cou-
pling can have a double-faced effect. Away from half-filling, on
the one hand it reduces the atomic gap and on the other hand it
decreases the effective Kondo energy scale [14], by effectively
reducing the orbital degeneracy; the latter is crucial for the
actual strength of correlations, as was shown in Ref. [58].
The effect of the spin-orbit coupling is, in that view, even
more complex. As we have seen, already in the atomic limit,
depending on the regimes, for filling 2

3 (the case of ruthenates)
it can either increase or decrease the gap (see Figs. 6 and 5); the
same happens for filling 1

3 . Instead, at half-filling (t3
2g atomic

configuration) the spin-orbit interaction always decreases the
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FIG. 7. Sr2RuO4: the LDA+DMFT (left panels) and LDA+
SO+DMFT (right panels) band structure (T = 290 K). The light lines
show the corresponding LDA and LDA+SO band structure.

gap since the energy of the S = 3
2 ground multiplet is only

modified by the spin-orbit interaction at second order in λ/J ;
here, we are assuming that, as typically the case for 3d and 4d

systems, the ratio λ/J is small. Furthermore, in the absence
of crystal-field interaction, the spin-orbit coupling decreases
the effective degeneracy of many-body states. Thus, for a
hypothetical t4

2g system in which the crystal-field splitting is
negligible and the spin-orbit interaction is isotropic, everything
else staying the same, λ, by itself, yields an enhancement of the
atomic gap and a reduction of the effective degeneracy; in this
situation, the spin-orbit interaction would favor in the atomic
limit a ground-state multiplet with total angular momentum
jt = 0. If λ is, however, sufficiently large, higher-energy spin
states mix with the ground multiplet and even the effect of the

Hund’s rule coupling is partially undone. Even more exotic
cases could be obtained, e.g., in the hypothetical case in which
the crystal-field splitting is finite and the spin-orbit anisotropy
δ is large, so that the spin-orbit coupling sizably decreases
the atomic gap. For the Sr ruthenates, where the crystal-field
splitting is comparable to the spin-orbit interaction and the
hopping integrals, as already observed, the effect is sensitive to
parameters, energy scale, and the temperature. Figure 3 shows
a reduction of the effective-mass enhancement down to 150 K,
much smaller for cRPA than cLDA parameters. In Fig. 7 it may
be seen that the difference in the spectral functions with and
without spin-orbit interaction is small; at intermediate energies
the correlated bands are, however, slightly more compressed in
the presence of the spin-orbit interaction. At high temperature,
the effect of spin-orbit interaction on masses and lifetimes
becomes negligible.

B. Optical conductivity

The main theoretical results for the optical conductivity are
shown in Fig. 8, where they are compared with experiments
[59–69], and in Fig. 9. LDA+DMFT cRPA calculations with
no spin-orbit interaction (Fig. 8, gray lines) are in line with
previous similar calculations [60]. At high energy, the effect of
increasing (U,J ) from the cRPA to the cLDA values is minor;
the differences appear mostly in the low- and intermediate-
energy and temperature regimes. Figure 8 shows that already
at 290 K, compared to the cLDA result, the cRPA static in-
plane conductivity is sizably closer to the experimental value
reported in Ref. [60], σd.c. ∼ 1.1 × 104 �−1 cm−1. Switching
on the spin-orbit coupling yields only small changes at this
temperature; at a first glance, the effect of the spin-orbit
interaction appears, however, qualitatively different in cRPA
and cLDA results. The cRPA conductivity with spin-orbit
coupling is merely shifted downwards with respect to the
one obtained without spin-orbit term. In the case of cLDA
calculations, instead, there is a transfer of spectral weight
from intermediate energy scale to the low-energy region,
which produces a small enhancement of the Drude peak. This
apparently qualitative difference turns out to be a shift of energy
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scale. Indeed, the effect of the spin-orbit interaction on the
conductivity is strongly temperature dependent, as it can be
seen by comparing the cLDA results at 290 and 150 K in Fig. 8,
and more in detail the results for several temperatures shown in
Fig. 9. At high enough temperatures, the spin-orbit interaction
shifts downwards the static conductivity; on lowering the
temperature, the Drude peak is progressively enhanced by
the spin-orbit interaction, until eventually the curve with and
without spin-orbit interaction cross. The crossing point takes
place at lower temperatures/frequencies for the cRPA than
for the cLDA parameters. When the temperature decreases
down to 150 K, the calculations with spin-orbit interaction
reproduce the experimental static conductivity (σd.c. ∼ 3 ×
104 �−1 cm−1 [60]) decisively better than those without spin-
orbit interaction. Furthermore, the 2πkBT foot (see Ref. [70]
for theoretical discussion), emerging around 2πkBT ∼ 0.1 eV
in the 150-K experimental data, is also better reproduced. This
can be seen both in Figs. 8 and 9. The effect of spin-orbit
interaction is less dramatic for the c-axis conductivity σc(ω). In
the case of Sr3Ru2O7, we obtain a spin-orbit-driven enhance-
ment of both the in-plane and out-of-plane conductivities. As
for the single-layered compound, Fig. 8 shows that also for
Sr3Ru2O7 taking the spin-orbit interaction into account visibly

improves the agreement with experiments [68,69], in particular
at low frequencies. The figure additionally shows that the
difference in magnitude between in-plane and out-of-plane
conductivities decreases sizably with respect to Sr2RuO4, in
line with previous observations [25]; for Sr3Ru2O7, the value
of σc(ω) is only a factor 3 smaller than σab(ω).

Next, we analyze how the various effects influence the op-
tical conductivity. For Sr2RuO4, in all cases (see Appendix A)
the effect of the spin-orbit coupling on the velocities or the LDA
Hamiltonian is minor for the in-plane conductivity; the same
conclusion can be drawn for the effect the spin-orbit-induced
off-diagonal elements of the self-energy. The main change is
due to the diagonal elements of the self-energy itself. The
out-of-plane conductivity σc(ω) behaves instead in a different
way; the dominant effect arises from the velocity matrices;
the next contribution is coming from the diagonal elements
of the self-energy. Let us investigate the various contributions
to the total conductivity. To this end, we split the transport
function T (ω,ω′) into three terms, T (ω,ω′) = Tintra + Tinter +
Tmix. The first term includes all intraorbital transitions. The
interorbital term is defined as

Tinter = 2π

V

∑
k,m�=m′

[
vk

m′m Ak
mm(ω + ω′) vk

mm′ Ak
m′m′(ω)

]
.

Finally, Tmix includes all remaining processes involving off-
diagonal elements of the spectral function and/or the velocity
matrix. In the case of Sr2RuO4, in the absence of spin-orbit
interaction, the self-energy matrix is by symmetry orbital
diagonal, and so is the local spectral function, hence the term
Tmix yields a negligible contribution; furthermore, for the in-
plane conductivity the intraorbital contributions dominate (see
Appendix A) and xz/yz and xy contributions are comparable.
Thus, the static in-plane conductivity is approximatively given
by Allen’s formula [70,71]

σab(0) ∼ h̄e2
∑
m

γm(0)

2 Im�m,m(0)
,

where the function γm(ε) = 1
V

∑
k |vk

mm|2δ(ε − εmk) is a
weighted density of states. On lowering the temperature or
decreasing (U,J ) the imaginary part of the self-energy pro-
gressively decreases; this leads to an increase of the Drude
peak. Switching on the spin-orbit interaction further decreases
the imaginary part of the self-energy (see Fig. 10), while
the effective quasiparticle lifetimes τ changes much less (see
Fig. 3). At 150 K, the imaginary part of the self-energy is still
larger (in absolute value) than πkBT , and thus 1/τ ∼ 2πkBT ,
as Fig. 3 shows. We also find that the so-called incoherent
regime [8,25], in which the scattering rate is almost linear
in kBT , extends to a large-temperature window for all cases
(Fig. 3). An additional important effect of the spin-orbit
interaction is that it gives rise to finite off-diagonal terms of
the self-energy and spectral-function matrix, which in turn give
rise to an important contribution from Tmix, in particular in the
low-energy regime. At intermediate energy, these processes
tend to decrease the final value, while at low frequencies,
they have the opposite effect, i.e., they further contribute to
the enhancement of the conductivity; this correspondingly
enhances the foot at ∼2πkBT , signing the onset of the thermal
regime [70]. The out-of-plane conductivity σc(ω) behaves very
differently. We find that the two main terms come, in this case,
from T

xz/yz

intra and T
xz,yz

inter , and the latter dominates. When the
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spin-orbit interaction is switched on, the first term decreases
and the second increases.

Remarkably, the total in-plane and out-of-plane transport
functions are very different; already in the noninteracting case,
the in-plane term has a much larger weight at low energy than
the out-of-plane terms. Increasing (U,J ), the low-energy peak
narrows, making the in-plane conductivity more sensitive to
temperature changes. In the case of Sr3Ru2O7, both in-plane
and out-of-plane terms have a sizable weight at zero energy;
thus, the strength of the temperature effect is comparable for
σab(ω) and σc(ω).

In conclusion, for Sr2RuO4, overall our LDA+DMFT
results are qualitatively in line with experiments both for
cRPA and cLDA parameters, i.e., both parameter sets correctly
reproduce the main features (a Drude-type peak and a broad
high-energy tail). The static in-plane conductivity appears,
however, better reproduced by the cRPA parameter set than
by cLDA values, which yield too short lifetimes. Even within
cRPA results, however, the experimental Drude peak remains
higher than the theoretical one unless we include explicitly
the effects of the spin-orbit coupling. The latter enhances
the zero-frequency peak at low enough temperatures. Indeed,
LDA+SO+DMFT results are in remarkably better agreement
with currently available experiments than LDA+DMFT spec-
tra; this indicates that, contrarily to what is often assumed, the
spin-orbit interaction is important for the realistic description
of low-energy properties probed via optical conductivity exper-
iments, and in particular the imaginary part of the self-energy.
Instead, the quasiparticle lifetimes are much less affected by
details, in line with typical approximations [72]. For Sr3Ru2O7,
we can similarly conclude that the spin-orbit interaction is nec-
essary to reproduce correctly the experimental zero-frequency
conductivity. Available experiments apparently differ among
each other at finite frequency, however; further experimental
investigation would be thus very important to finally settle the
problem.

C. Effects of the tetragonal Coulomb terms

Up to here we have discussed results obtained with an
O(3)-symmetric Coulomb vertex, the most commonly adopted
approximation. Recently [23], we have shown that the D4h-
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FIG. 11. Sr2RuO4: effect of �U on the orbital-resolved spectral
function in states/eV/cell. Calculations are for T = 290 K, (U,J ) =
(3.1,0.7) eV, and with spin-orbit interaction. Full line: �U = 0.
Dashed curves with increasing dash level: �U = 0.15,0.3,0.45 eV.
Black lines: orbital average for each value of �U .

symmetric Coulomb terms strongly affect the shape of the
Fermi surface of Sr2RuO4. Here, we analyze the effect of
Coulomb anisotropy on the spectral function, the effective
masses, and the optical conductivity. We first focus on the case
of Sr2RuO4 and perform LDA+SO+DMFT calculations for a
range of �U between 0 and 0.45 eV, and 0 � �U ′ � �U/3;
since the parameter �U ′ affects only weakly the results, here
we will discuss mainly the effects of �U . The cRPA value
is �U = 0.3 eV, and lies in the middle of the range of values
that we consider. There are at present no available cLDA-based
results, but it is likely that the cLDA value of the Coulomb
tetragonal anisotropy is slightly larger than the cRPA one; since
(U,J ) are about a factor 1.3–1.7 larger in cLDA, we can expect
that, correspondingly, �U ∼ 0.30–0.45 eV in cLDA. The key
results are shown in Figs. 11 and 12. Figure 11 shows that
the average spectral functions do not change so much with
increasing �U , while the orbital-dependent spectral functions
exhibit a (small) weight transfer from thexy to thexz/yz states.
More important, with increasing �U the effective mass of the
xy orbital increases, while that of the xz/yz orbital decreases
(Fig. 12); remarkably, the average mass enhancement remains
instead almost constant. For the in-plane conductivity, although
the relative contribution of different orbitals changes with
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FIG. 12. Sr2RuO4: effect of �U on m∗/m (obtained from imag-
inary frequency data) and σ (0), normalized to their �U = 0 value.
Squares: xz/yz intraorbital term. Circles: xy intraorbital term. Di-
amonds: orbital average. Empty symbols: σab(0). Filled symbols:
σc(0). Calculations are for cLDA parameters, T = 290 K, and with
spin-orbit interaction. Results for cRPA parameters are similar but
the effect weaker (e.g., for m∗/m we find a ∼10% instead of a ∼20%
change for �U = 0.45 eV).
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FIG. 13. Sr2RuO4: correlated band structure in the different cases
(T = 290 K) with and without D4h Coulomb terms. The latter
increases the mass anisotropy.

increasing �U , the change in the total is very small, below 2%
when �U increases from 0 to 0.45 eV. A larger effect can be
seen in the out-of-plane conductivity, due to the fact that in this
case are mostly the xz/yz terms (intraorbital and interorbital)
that contribute. All together, this shows that the tetragonal
Coulomb repulsion anisotropy has a large impact not only at
the Fermi surface of Sr2RuO4 [23]. It reduces the out-of-plane
conductivity and enhances visibly the effective-mass orbital
anisotropy. Experimentally, relatively large mass anisotropy
has been reported [3,15–17,31]. The effective masses and their
anisotropy obtained in calculations with cRPA parameters are
closer to reported experimental values than those obtained with
cLDA parameters; the agreement between cRPA calculations
and experiments tends to improve, however, when we account
for the effect of D4h Coulomb term. The correlated band
structure with and without D4h terms is shown in Fig. 13.

For the double-layered Sr3Ru2O7 larger masses than for
Sr2RuO4 have been reported [5,18,19,73]. Our cRPA-based
results with O(3) Coulomb vertex already reproduce well this
trend, as can be seen in Fig. 3; similar calculations yield
analogous conclusions [25]. Furthermore, we find only a weak
orbital dependence in the effective masses. The effect of the
spin-orbit interaction is, down to 150 K, similar to what we find
for the single-layered ruthenate. For what concerns Coulomb
tetragonal terms, to the best of our knowledge, cRPA/cLDA
estimates of �U are not yet available. Using the values of
�U reported for Sr2RuO4, similar conclusions concerning
the effects of tetragonal Coulomb terms hold for the double-
and single-layered ruthenate. A negative �U would, on the
other hand, reduce the effective-mass anisotropy or even, if
sufficiently large, reverse its sign. Finally, we find that for
both materials the effect of �U is much weaker not only
in photoemission spectra, but also in the in-plane optical
conductivity, i.e., in experiments in which an average of the
contributions of the different orbitals is probed.

IV. CONCLUSIONS

In this work, we investigate the low-energy electronic prop-
erties and the optical conductivity of Sr2RuO4 and Sr3Ru2O7.
We adopt the LDA+DMFT approach and use a generalized
continuous-time interaction-expansion quantum Monte Carlo
solver. We study the effects of the spin-orbit interaction and
of the tetragonal D4h Coulomb terms, as well as their inter-

play with hopping integrals, crystal-field splitting, and O(3)-
symmetric Coulomb interaction. In the first part of the paper
we perform calculations with the O(3)-symmetric Coulomb
vertex. We compare results obtained using different screened
Coulomb parameter sets, one calculated via the constrained
random-phase approximation approach [8] and the other via
the constrained local-density approximation method [9]. This
is important because it remains to date unclear which of these
two approximated methods yields, in general, more realistic
values of screened Coulomb parameters for LDA+DMFT
calculations. The first method typically underestimates and the
second method often overestimates the Coulomb parameters;
this is in part due to the fact that in cRPA more screening
channels are included [74]. The two approaches thus provide
the interval in which realistic Coulomb parameters can vary.
We show that, in the case of layered ruthenates, the cRPA-based
results better describe currently available electronic transport
data, in particular the static conductivity and the thermal
regime. We show that, however, for a realistic description of
the ruthenates, including the spin-orbit interaction is important.
We show that in t2g systems, the spin-orbit interaction can
either increase or decrease the strength of correlation effects,
depending on the parameters, the filling, and the energy scale.
For the layered ruthenates, we find that down to 150 K the
spin-orbit interaction partially reduces the mass enhancements
and the low-frequency imaginary part of the self-energy, and
thus enhances the optical conductivity. In the last part of our
work we study the effects of the Coulomb tetragonal terms;
in Sr2RuO4, the latter further enhance the ratio between the
xy and xz/yz mass renormalization, improving the agreement
with available experiments. Instead, the effects of the tetrago-
nal Coulomb term �U is small in averaged quantities such as
the in-plane conductivity and the total spectral function. These
conclusions also apply to Sr3Ru2O7; for the latter, material-
specific estimates of �U are, to the best of our knowledge, not
yet available, however. At a more general level, we conclude
that both the low-symmetry screened Coulomb terms and the
spin-orbit interaction can have a visible impact on low-energy
properties. Thus, for systems in which they are comparable
with other energy scales, these interactions should not be
neglected even if they are difficult to be accounted for. This is
in particular crucial when the aim is to identify the signatures
of nonlocal physics, separating them from the effects which are
already well described by the local self-energy approximation.
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APPENDIX A: ORBITAL-RESOLVED
CONTRIBUTIONS TO σab(ω)

In this appendix, we analyze the various contributions to the
in-plane and out-of-plane conductivity of Sr2RuO4. The con-
clusions for Sr3Ru2O7 are similar (when taking the different
unit cell into account). The results are shown in Fig. 14, where
the original results of LDA+DMFT and LDA+SO+DMFT
simulations are compared with several idealized calculations.
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FIG. 14. Sr2RuO4 conductivity calculated with (filled circles) and
without (empty circles) spin-orbit interaction (T = 150 K, cLDA
parameters). Also shown are calculations in which (i) the velocity
matrix elements are set to 1, (ii) the velocities with spin-orbit coupling
are replaced by those without, (iii) the LDA Hamiltonian with spin
orbit is replaced by the one without, (iv) the off-diagonal elements
of the LDA+SO+DMFT self-energy matrix are neglected, and,
finally, (v) the LDA+SO+DMFT self-energy is replaced by the
LDA+DMFT self-energy (black line).

For the latter we use different approximations, consisting in
replacing in the expression of the conductivity some terms
with others. The figure shows, in particular, that the frequency
dependence of σab(ω) is not affected in a relevant way either by
the velocities or by the off-diagonal elements of the self-energy.
The main difference between the results with and without spin-
orbit interactions comes instead from the diagonal elements of
the self-energy themselves, and their modification due to the
spin-orbit interaction. Remarkably, the conclusion is not the
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FIG. 15. Sr2RuO4: various contributions to the in-plane conduc-
tivity σab(ω). Calculations are performed at 290 K (left) and 150 K
(right), and for cLDA parameters. Intraband terms: squares (xz/yz)
and circles (xy). Interband terms: gray lines. Rest: pentagons. Empty
symbols: calculations without spin-orbit coupling. Full symbols:
calculations with spin-orbit coupling. The conductivity is given in
103 �−1 cm−1 units.

same for the out-of-plane conductivity σc(ω), for which the
velocity element of matrix plays a key role. If the elements of
matrices are set to one, the out-of-plane conductivity coincides
with the in-plane conductivity. As for the in-plane conductivity,
the effect of the spin-orbit coupling on the spectral function,
instead, enters mostly via the diagonal terms of the self-energy.
In Fig. 15 we show the in-plane contribution split into its most
important components. Here, it may be seen that the effect
of spin-orbit is twofold. First, it yields finite interorbital and
mixed terms. Second, it enhances the contribution of the xz

and yz intraorbital terms with respect to the contribution of
the xy intraorbital term. This leads to an enhancement of the
Drude peak and of the static conductivity, but also to a more
pronounced foot at ∼0.1 eV.

APPENDIX B: SYMMETRY PROPERTIES OF LOCAL OPERATORS

Let us consider a Hermitian quadratic local operator Ô expressed in the t2g basis {mσ }. This type of operator has a unique
structure if the site symmetry is D4h, C4, or C2. To derive this general form, we use the properties of the double groups associated
with the point groups given above. Let us start with the group D4h. In the absence of spin-orbit interaction, the irreducible
representations of D4h in which the cubic t2g representation split are b1g (xy) and eg (xz,yz); this means that xy and (xz,yz)
states do not couple, and the (xz,yz) states are degenerate, hence, only the Ôxyσ,xyσ = ob1g

and Ôxzσ,xzσ = Ôyzσ,yzσ = oeg

elements are nonzero. In the presence of spin-orbit interaction, the relevant irreducible representations are the �6 and �7, both
twofold degenerate. The states |7′〉σ = |xy〉σ and |7′′〉σ = 1√

2
[|xz〉σ + i(−1)σ |yz〉σ ] are partner functions for the �7 irreducible

representation, while the states |6〉σ = 1√
2
[|xz〉σ − i(−1)σ |yz〉σ ] are partner functions for the �6 irreducible representation;

here, (−1)σ = −1 for spin up and (−1)σ = +1 for spin down. The states belonging to different irreducible representations
or different rows/columns of the same irreducible representation do not couple, hence, the only elements which are not
zero are o′

7 = Ô7′σ,7′σ , o′′
7 = o7′′σ,7′′σ , o7 = iÔ7′σ,7′′−σ , and o6 = Ô6σ,6σ . By rotating back to the original basis, ordered as

|xy〉↑, |yz〉↑, |xz〉↑, |xy〉↓, |yz〉↓, |xz〉↓, we find Ô = Ô0 + Ô1, where the first part is diagonal:

Ô0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

o′
7 0 0 0 0 0

0 o6+o′′
7

2 0 0 0 0

0 0 o6+o′′
7

2 0 0 0

0 0 0 o′
7 0 0

0 0 0 0 o6+o′′
7

2 0

0 0 0 0 0 o6+o′′
7

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The second term, the off-diagonal part, is zero in the absence of spin-orbit interaction. In the presence of spin-orbit interaction it
takes the form

Ô1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 o7√
2

−io7√
2

0 0 i(o7−o′′
6 )

2
−o7√

2
0 0

0 i(o7−o′′
6 )

2 0 −io7√
2

0 0

0 −o7√
2

−io7√
2

0 0 0

o7√
2

0 0 0 0 i(o7−o′′
6 )

2
−io7√

2
0 0 0 i(o7−o′′

6 )
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This shows that, in order to make real any D4h-symmetric local operator of this type, it is sufficient to introduce an extra (−1)σπ/2
phase for the |xz〉σ orbital. In the case of point group C4, nothing changes; in the absence of spin orbit, the cubic t2g split into b (xy)
and e (xz,yz) irreducible representations, and a local operator has the same structure as in the D4h case. In the C2 case, however, the
situation is more complex since there is only one spinor irreducible representation �5. The corresponding matrix for a local object
is given by Ô + δÔ, where Ô = Ô0 + Ô1, provided that we replace o′

7 → o′
5, o6 → o6

5, o′′
7 → o′′

5, o7 → o5. The additional
term is

δÔ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −δo5√
2

−iδo5√
2

0 −2δoR
5

2
2iδoI

5
2

δo5√
2

0 0

0 −2ioI
5

2
2δRo6

5
2 − iδo5√

2
0 0

0 δo5√
2

−iδo5√
2

0 0 0
−δo5√

2
0 0 0 −2δoR

5
2

−2iδoI
5

2

−iδo5√
2

0 0 0 2iδoI
5

2
2δRo6

5
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We find that for Ru sites the elements of δÔ are negligible in Sr3Ru2O7, and that thus basically the same structure holds for a
Ru-centered local operator as in Sr2RuO4.

APPENDIX C: HARTREE-FOCK LIMIT OF THE
SELF-ENERGY AND DOUBLE-COUNTING CORRECTION

In the large-frequency limit, the DMFT self-energy equals
the Hartree-Fock self-energy. The latter can be calculated from
the Hartree-Fock Hamiltonian

HHF =1

2

∑
mpσσ ′m′p′

Umm′pp′
[
n̂σσ

mpnσ ′σ ′
m′p′ − n̂σσ ′

mp′n
σ ′σ
m′p

]

+ 1

2

∑
mpσσ ′m′p′

Umm′pp′
[
nσσ

mpn̂σ ′σ ′
m′p′ − nσσ ′

mp′ n̂
σ ′σ
m′p

]

− 1

2

∑
mpσσ ′m′p′

Umm′pp′
[
nσσ

mpnσ ′σ ′
m′p′ − nσσ ′

mp′n
σ ′σ
m′p

]
,

where n̂σσ ′
mm′ is an element of the density matrix. For the

model specifically considered in this work, the essential terms
correspond to an effective shift of the onsite parameters εCF →
εCF + �εCF, λi → λi + �λi , with

�εCF =
[
p

2
(U − 5J ) − �U

6
(n + p) − �U ′

3
(n − p)

]

and

�λz

2
= − [U − 3J − �U ′]nσσ ′

xz,yz δσ,σ ′ ,

�λ
xz/yz
xy

2
= − [U − 3J ]nσσ ′

xy,xz/yzδσ,−σ ′ .

In the formulas above the parameter n = nxy + nxz + nyz = 4
is the number of electrons and the parameter p = nxy − (nxz +
nyz)/2 is the orbital polarization; here, we have defined for
simplicity nm = n

↑↑
mm + n

↓↓
mm. We can now use these results to

calculate the double-counting correction for the nonspherical
terms. For metallic systems with negligible orbital polariza-
tion, it is reasonable to assume that LDA describes very well
the average Coulomb interaction in the around mean-field
approximation. This corresponds to the term

H HF = n

6

∑
mσσ ′m′

n̂σσ
mm[Umm′mm′ − Umm′m′mδσ,σ ′]

−
(

n

6

)2 1

2

∑
mpσσ ′m′p′

[Umm′mm′ − Umm′m′mδσ,σ ′].

Hence, after adding up all O(3)-symmetric terms in a chemical
potential δμ, we have, for the terms explicitly discussed in this
work, we obtain the expression

H AMF
d.c. = δμ n̂+n

6
[�U + 2�U ′]

∑
σ

n̂σ
xy.

APPENDIX D: ATOMIC MULTIPLETS
AND THEIR ENERGIES

In the atomic limit, the ground-state multiplets in the pres-
ence of the spin-orbit interaction are listed below; we neglect
intermultiplet couplings due to the spin-orbit interaction. This

085141-12



EFFECTIVE MASSES, LIFETIMES, AND OPTICAL … PHYSICAL REVIEW B 97, 085141 (2018)

TABLE I. The N = 4 and 5 ground multiplets in the presence of crystal field and spin-orbit interaction, in the case λxy = λx = λy . For
convenience, we have introduced theN = 4 states |m,σ1 + σ2〉 = 1√

2(1+|σ1+σ2 |) [c†m1σ1
c†m2σ2

+ c†m1σ2
c†m2σ1

]c†m↑c
†
m↓|0〉, and theN = 5 states |m̃,σ 〉 =

c
†
m̃,σ c

†
m2↑c

†
m2↓c

†
m1↑c

†
m1↓|0〉. The states with N = 2 and 1 electrons can be obtained from those given in the table above by using particle-hole

symmetry. The coefficients α2i+1 and α2i+2 (i = 0,1,2) are such that α2
2i+1 + α2

2i+2 = 1, while α2
2i+1 = b2

2i+1λ2
xy

(a2i+1−
√

a2
2i+1+b2

2i+1λ2
xy )

2+b2
2i+1λ2

xy

, where

a1 = εCF, a3 = εCF − λz, and a5 = −εCF − λz/2, and b1 = 1, b3 = b5 = √
2.

|N ; α〉 El(N ) = EU,J (N ) + εl(N )

|4; b,2σ 〉 = 1√
2
[|xz,2σ 〉 + 2iσ |yz,2σ 〉] 6U − 13J + 3εCF + λz

2

|4; a2g〉 = 1
2 [|xz, − 1〉 + i|yz, − 1〉 − |xz, + 1〉 + i|yz, + 1〉] 6U − 13J + 3εCF − λz

2

|4; e
′′
ga〉 = α1|xy, + 1〉 + α2√

2
[|xz,0〉 + i|yz,0〉] 6U − 13J + 2εCF + 1

2

[
εCF +

√
ε2

CF + λ2
xy

]
|4; e

′′
gb〉 = α1|xy, − 1〉 + α2√

2
[|xz,0〉 − i|yz,0〉] 6U − 13J + 2εCF + 1

2

[
εCF +

√
ε2

CF + λ2
xy

]
|4; e

′
ga〉 = α2|xy, + 1〉 − α1√

2
[|xz,0〉 + i|yz,0〉] 6U − 13J + 2εCF + 1

2

[
εCF −

√
ε2

CF + λ2
xy

]
|4; e

′
gb〉 = α2|xy, − 1〉 − α1√

2
[|xz,0〉 − i|yz,0〉] 6U − 13J + 2εCF + 1

2

[
εCF −

√
ε2

CF + λ2
xy

]
|4; a

′′
1g〉 = α3|xy,0〉 + α4

2 [|xz, − 1〉 + i|yz, − 1〉 + |xz, + 1〉 − i|yz, + 1〉] 6U − 13J + 2εCF + 1
2

[
εCF − λz

2 +
√(

εCF − λz

2

)2 + 2λ2
xy

]
|4; a

′
1g〉 = α4|xy,0〉 − α3

2 [|xz, − 1〉 + i|yz, − 1〉 + |xz, + 1〉 − i|yz, + 1〉] 6U − 13J + 2εCF + 1
2

[
εCF − λz

2 −
√(

εCF − λz

2

)2 + 2λ2
xy

]
|5; �6,σ 〉 = 1√

2
[|x̃z,σ 〉 + 2iσ |ỹz,σ 〉] 10U − 20J + 3εCF + λz

2

|5; �
′′
7 ,σ 〉 = α5|x̃y,σ 〉 + α6√

2
[|x̃z, − σ 〉 − 2iσ |ỹz, − σ 〉] 10U − 20J + 4εCF + 1

2

[−εCF − λz

2 +
√(

εCF + λz

2

)2 + 2λ2
xy

]
|5; �

′
7,σ 〉 = α6|x̃y,σ 〉 − α5√

2
[|x̃z, − σ 〉 − 2iσ |ỹz, − σ 〉] 10U − 20J + 4εCF + 1

2

[ − εCF − λz

2 −
√(

εCF + λz

2

)2 + 2λ2
xy

]

approximation is valid for small λ/J . The next multiplet
has S = 0 and it is, neglecting spin-orbit effects, higher in
energy of 2J . The states with N = 3 electrons do not split
when intermultiplet couplings due to the spin-orbit interaction
are neglected; they have therefore energy 3U − 9J (ground

multiplet), 3U − 6J , and 3U − 4J . The complete list of states
for λ = 0 can be found in Ref. [24]. The N = 4 and 5 states
are given in Table I. The states for N = 2 and 1 can be
obtained from those given in the table for N = 1 and 5 by
using particle-hole symmetry.
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