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Li2VOSiO4 and VOMoO4 have been proposed as realizations of the frustrated two-dimensional J1-J2 quantum

Heisenberg model. In this work, in order to test this picture, we study their electronic and magnetic properties

by using the local-density approximation + dynamical mean-field theory method. We calculate the magnetic

linear response function starting from material-specific Hubbard models and systematically map our results onto

those from generalized quantum Heisenberg models. We obtain the effective local magnetic moments and the

associated magnetic exchange couplings, in particular the ratio J2/J1, a measure of the frustration degree, and the

ratio 2J⊥/(J1 + J2), measuring the three-dimensionality degree. Our results support a weak frustration picture

for both materials, with small but non-negligible long-range interplane couplings, leading to three-dimensional

order at low temperature. Implications for the physics of the two systems are discussed.
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I. INTRODUCTION

The layered vanadates Li2VOSiO4 and VOMoO4 have been

proposed as possible realizations of the two-dimensional J1-J2

quantum Heisenberg model, perhaps in the strong frustration

regime [1–5]. The bonanza of unconventional phenomena

predicted by theoretical studies of frustrated systems [6–10]

has thus triggered a lot of attention towards these or similar

materials [11–18], both theoretically and experimentally. From

the point of view of the crystal and electronic structure

Li2VOSiO4 and VOMoO4 have several characteristics in

common; they are both made by VO5 pyramids forming layers;

within a single layer, the VO5 pyramids point alternately

upwards and downwards (see Fig. 1), and the V atoms at

the center of the pyramids form a squarelike lattice (see

Fig. 2). Furthermore, they both have partially filled narrow

V bands (3d1 configuration). In the quantum Heisenberg

model representation, the V atoms behave as local spins

(S = 1/2); the magnetic exchange couplings J1 and J2 are

those between V spins belonging to the same layer and forming

a squarelike lattice; J1 is associated with the V-V bond along

the side of the square (at the center of pyramids pointing

to opposite directions) and J2 to the V-V bond along the

diagonal.

The analysis of early experiments supported the strong

frustration picture (with J1 ∼ J2) [2,3]. For Li2VOSiO4,

nuclear magnetic resonance (NMR), muon-spin rotation, and

thermodynamic measurements lead to the estimates J1 + J2 ∼
8.5 K and J2/J1 ∼ 1.1. Furthermore, these experiments sug-

gest that a collinear antiferromagnetic structure is established

around TN ∼ 2.8 K, a type of ordering predicted for the

frustrated quantum Heisenberg model [19]. In such a magnetic

structure—which in the rest of the paper will be called in short

collinear—lines of parallel spins along, e.g., the a direction,

are aligned antiferromagnetically with respect to each other.

The corresponding ordered magnetic moments were estimated

to be strongly reduced, m(T → 0) = 0.24 µB [2,3], a value

again in agreement with the strongly frustrated quantum

Heisenberg model picture. In line with this view, the lattice

distortions observed around TN were interpreted as frustration

driven [2,3], with the degeneracy of the frustrated state

perhaps lifted via the so-called spin Jahn-Teller effect [11–13].

Similar conclusions, although with sizably larger couplings,

J1 + J2 ∼ 155 K, and higher critical temperature, TN ∼ 42 K,

were reached for VOMoO4, for which it was estimated that

J1 ∼ J2 [4].

This is, however, not the end of the story. Indeed, the

experiments discussed above do not probe J2/J1 directly,

but only via the theoretical framework used in analyzing the

data. In contrast to the strong frustration picture, ab initio

studies [4,20,21] placed both systems in the weakly frustrated

regime. As a matter of fact, these calculations, based on the

local-density approximation (LDA) plus perturbation theory,

yield J2/J1 ∼ 12 for Li2VOSiO4 (well inside the collinear

regime), and J2/J1 ∼ 0.2 for VOMoO4 (well inside the

FIG. 1. The structure of Li2VOSiO4 showing the VO5 pyramids

arranged in layers. In a given layer, the V atoms at the center of

pyramids form a pseudosquare lattice, with neighboring V4+ ions

occupying positions (1/4,1/4,z) and (3/4,3/4, − z).
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FIG. 2. The crystal structure of VOMoO4 seen from the c

direction, showing the pseudosquare lattice formed by VO5 pyramids

and MoO4 tetrahedra. The coupling J1 is between two V atoms

at the center of nearest-neighboring pyramids pointing in opposite

directions, while J2 is between two V atoms at the center of next-

nearest-neighboring pyramids, which point towards the same direc-

tion. Nearest-neighboring V4+ ions occupy the positions (1/4,1/4,z)

and (3/4,3/4, − z). Differently than in Li2VOSiO4 (see Fig. 1), the

VO5 pyramids point away from the interior of the layer; furthermore,

they are rotated.

Néel antiferromagnetic regime). Later on, a high-temperature

expansion study of the J1-J2 Heisenberg model pointed

out that the experimental specific heat and susceptibility of

Li2VOSiO4 (from Refs. [2,3]) are compatible with large J2/J1

values in line with LDA-based results [5]. More recently,

neutron diffraction and resonant x-ray scattering experiments

have shown that both systems order magnetically in three

dimensions [22,23], with critical temperatures close to pre-

vious estimates [2–4]: Li2VOSiO4 exhibits in-plane collinear

antiferromagnetic order with ferromagnetic stacking along the

c axis, VOMoO4 Néel antiferromagnetic order below ∼40

K. Additionally, magnetic moments larger than previously

estimated were reported [22,23], m(T → 0) ∼ 0.63 µB for

Li2VOSiO4 and m(T → 0) ∼ 0.41 µB for VOMoO4. These

theoretical and experimental results, taken together, shift the

balance in favor of a weak frustration scenario; the latter could

explain a partial moment reduction [6–10].

Key to this conclusion is, however, to a large extent, the

LDA estimate of the magnetic exchange couplings of the

J1-J2 Heisenberg model. It becomes therefore crucial to put

the latter to a test and study the emergence of effective

local spins and the associated magnetic couplings both in

a realistic setting and with a nonperturbative many-body

method (beyond LDA and LDA+U ). Indeed, the frustration

degree could be either enhanced or suppressed by dynamical

effects; reduced magnetic moments could, e.g., be partially

associated with charge fluctuations; long-range exchange

couplings could play a nontrivial role. To capture these effects

it is essential to start from material-specific Hubbard models,

rather than from effective J1-J2 Heisenberg models, solve

them nonperturbatively and calculate the associated magnetic

response functions and magnetic couplings. This is even more

important in view of recent high-pressure studies and the

associated LDA-based calculations of the magnetic couplings

J1 and J2 [21]; they indicate that in Li2VOSiO4 increasing the

pressure up to ∼7.6 GPa, leads to a decrease of about 40% of

the J2/J1 ratio hinting to the possibility of tuning the ground

state from collinear to disordered. Correlation effects might

further help or hinder this possibility.

In the present paper we study the correlated electronic

structure and the magnetic interactions in Li2VOSiO4 and

VOMoO4 by using the state-of-the-art approach, the local-

density approximation plus dynamical mean-field theory

(LDA+DMFT) method. To this end, the minimal material-

specific many-body model to use is the half-filled one-band

Hubbard model describing the xy low-energy states [24]. By

using linear response-function theory on top of LDA+DMFT

calculations we calculate the magnetic response function of

the Hubbard model in the high-temperature (T ≫ TN ) regime.

This approach enables us to extract from the susceptibility

both the effective local spin [25] S and the actual effective

superexchange coupling J (q), including nontrivial many-

body effects; the Fourier transform of J (q) to real space

yields the couplings of a generalized quantum Heisenberg

model. Our results identify superexchange driven magnetic

instabilities at qC = (2π,0,0) for VOMoO4 and qC = (π,π,π )

for Li2VOSiO4. Apart from in-plane exchange couplings J1

and J2, the effective interlayer coupling J⊥ could also play a

role. We thus study both the ratio 2J⊥/(J1 + J2), a measure

of the degree of three dimensionality, and the ratio J2/J1,

a measure of the frustration degree. We find that they are

weakly dependent on both U (in a very large interval) and

the temperature. Overall, for a realistic U ∼ 5 eV our results

support for both systems the weak-frustration scenario with

a small but non-negligible interplane coupling. The effective

local spin S is very close to the ideal value S = 1/2, unless

the ratio W/U becomes unrealistically large; this indicates

that charge fluctuations are correspondingly small. Finally,

we present a simple approximate analytical expression for the

high-temperature magnetic LDA+DMFT susceptibility. This

expression could be useful for analyzing magnetic instabilities

in other frustrated Mott insulators; it can also be generalized

to the multiband case.

The paper is organized as follows. In Sec. II we shortly

present our implementation of the LDA+DMFT approach

to calculate linear response functions. This implementation

has been designed for systems described by a generalized

Hubbard model and to optimally exploit the power of modern

massively parallel supercomputers. In Sec. III we discuss

our results for Li2VOSiO4 and VOMoO4. In Sec. IV we

present the conclusions. Technical details are provided in the

Appendix.

II. METHOD

In order to study the magnetic properties of VOMoO4

and Li2VOSiO4 we use the local-density approximation plus

dynamical mean-field theory (LDA+DMFT) approach [28].

In a first step we build a generalized Hubbard Hamiltonian for
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FIG. 3. Full LDA band structure of VOMoO4 (left) and

Li2VOSiO4 (right). The narrow xy band is the band crossing the

energy zero.

the full set of the V d bands

H = −
∑

ii ′

∑

σ

∑

mm′

t ii
′

mm′c
†
imσ ci ′m′σ

+
1

2

∑

i

∑

σσ ′

∑

m(�=m′)

(Umm′ − Jδσσ ′)nimσnim′σ ′

+
∑

i

∑

m

Ummnim↑nim↓, (1)

where c
†
imσ (cimσ ) creates (annihilates) an electron with spin

σ in orbital m on lattice site i and nimσ = c
†
imσ cimσ . The

parameters Umm′ = U − 2J (1 − δmm′ ) and J are the screened

direct and exchange Coulomb interaction, respectively. The

elements of matrix t ii
′

mm′ are hopping (i �= i ′) and crystal-field

(i = i ′) integrals; we obtain them ab initio by downfolding

to the V 3d bands and constructing a localized Wannier

function basis; to do this we adopt the downfolding procedure

based on the N th-order muffin-tin orbital (NMTO) method.

The full LDA band structure is shown in Fig. 3 [29]. For

both VOMoO4 and Li2VOSiO4 the m = xy-like band crosses

the Fermi level and the remaining d bands are empty; the

m = xz, yz, x2 − y2, and 3z2 − r2 crystal-field states are well

above the xy level. Thus for the actual dynamical mean-field

theory (DMFT) [30] and cellular dynamical mean-field theory

(cDMFT) calculations we proceed to further downfolding to

the xy band; in the absence of experimental estimates of

the gap and of measurements probing the spectral function,

we perform the calculations varying U between 1 and 5 eV

(see Fig. 4). In Sec. III C we will see that U ∼ 5 eV is the

value which best reproduces the Curie-Weiss temperature in

both systems; it is also a typical value for vanadates [29].

We use both a Hirsch-Fye quantum Monte Carlo (QMC) [31]

solver and a CT-HYB QMC quantum impurity solver [32], the

latter in the implementation of Ref. [33]. The susceptibility

calculations are mostly based on the Hirsch-Fye QMC code.

Via the quantum-impurity solver we obtain χα(ν), the Fourier

transform of the local susceptibility tensor χα(τ ), defined

as [34]

χα(τ ) =
〈
T cα1

(τ1)c†α2
(τ2)cα3

(τ3)c†α4
(τ4)

〉

−
〈
T cα1

(τ1)c†α2
(τ2)

〉〈
T cα3

(τ3)c†α4
(τ4)

〉
.
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FIG. 4. LDA+DMFT spectral function for VOMoO4 (left) and

Li2VOSiO4 (right) at 380 K and for 1 < U < 5 eV. The linewidth

increases with increasing U in steps of 1 eV. The metal-insulator

transition occurs for VOMoO4 for U between 1.5 and 2 eV; instead,

Li2VOSiO4 becomes insulator already between 0.5 and 1 eV.

Here T is the time order operator, τ = (τ1,τ2,τ3,τ4) and

τj are imaginary times. The indices α = (α1,α2,α3,α4) and

αj = mjσj ij are collective orbital (mj ) spin (σj ) and site

(ij ) indices; the latter label, in cDMFT calculations, the

V sites within the cluster {ic}. The Fourier transform to

Matsubara frequencies is χα(ν) = χα

n,n′ (ωm), where ν =
(νn, − νn − ωm,νn′ + ωm, − νn′ ), νn and νn′ are fermionic

and ωm bosonic Matsubara frequencies. The tensor elements

χα

n,n′ (ωm) = [χ (ωm)]N,N ′ build a square matrix with elements

N = α1n, α2n, N ′ = α3n
′, α4n

′; for the magnetic susceptibil-

ity only terms with σ1 = σ2 = σ and σ3 = σ4 = σ ′ contribute.

The χ (ωm) matrix is zero everywhere except within a quantum-

impurity block (ij = i1 in DMFT and ij = {ic} in cDMFT

calculations); for clarity, we denote with Nc the elements N

belonging to one of such blocks. The local susceptibility χ (ωm)

calculated via QMC as discussed above, together with χ0(ωm),

the bubble contribution to the local susceptibility, a sum of

product of Green function matrices, allows us to calculate

the local vertex Ŵ(ωm). This, in turn, yields, within the local-

vertex-approximation, the lattice susceptibility χ (q; ωm). Let

us see how. In the local-vertex approximation [30,35] the

lattice susceptibility χ (q; ωm) is given by the solution of the

Bethe-Salpeter equation

χ (q; ωm) = χ0(q; ωm) + χ0(q; ωm)Ŵ(ωm)χ (q; ωm). (2)

Here χ (q; ωm), χ0(q; ωm), and Ŵ(ωm) are all N × N matrices;

the elements of the matrix χ0(q; ωm) can be written as

[χ0(q; ωm)]N,N ′ = −βδnn′δσ2σ3
δσ1σ4

×
1

Nk

∑

k

Gk+q
α2α3

(νn + ωm)Gk
α4α1

(νn), (3)

where Gk
αiαj

(νn) is the (c)DMFT lattice Green function; thus, to

calculate the lattice susceptibility it is sufficient to calculate the

Green function matrix (we obtain it from the LDA Hamiltonian

and the LDA+DMFT self-energy) and the local vertex matrix

Ŵ(ωm). The latter is the solution of the local Bethe-Salpeter

equation [30,35]

χ (ωm) = χ0(ωm) + χ0(ωm)Ŵ(ωm)χ (ωm), (4)

with

[χ0(ωm)]Nc,N ′
c
=

1

Nq

∑

q

[χ0(q; ωm)]Nc,N ′
c
.
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By solving Eq. (4) we find the expression of Ŵ(ωm) in terms

of the inverse of χ0(ωm) and the inverse of χ (ωm); the

latter is obtained, as we already discussed, directly from the

QMC solution of the quantum-impurity problem. The local

vertex, calculated in this way, is then replaced in Eq. (2),

whose solution finally yields the lattice susceptibility tensor

χα

n,n′ (q; ωm) = [χ (q; ωm)]N,N ′ .

Finally, the magnetic susceptibility is given by

χ (q; ωm) =
(gµB)2

4

∑

α

(−1)σ1+σ3δσ1σ2
χα(q; ωm)δσ3σ4

,

where

χα(q; ωm) =
1

β2

∑

nn′

χα

n,n′ (q; ωm).

The bottleneck of the approach is the computation of the local

or cluster susceptibility tensor with the quantum Monte Carlo

method; this can be very time consuming, in particular in

the multiorbital or multisite case, although the calculation

is performed only once at the end of the self-consistency

loop. To speed up the calculations we have parallelized our

code optimizing it for modern massively parallel architectures.

Furthermore, we directly sample with QMC the Fourier

transform of the local Green-function matrix G(τ,τ ′); we do

this by shifting the discontinuities of the Green-function matrix

to the border and using the two-dimensional Filon-trapezoidal

method (see Appendix for more details), an approach which

turned out to be very efficient. Finally, we perform the

sum on the Matsubara frequencies for a finite number of

frequencies and use an extrapolation procedure to recover the

infinite number limit. Symmetries are exploited for further

optimization.

III. RESULTS

A. Correlated electronic structure

Both VOMoO4 and Li2VOSiO4 are characterized by narrow

and well separated xy LDA bands at the Fermi level (see

Fig. 3), with bandwidth W ∼ 1.1 eV in the case of VOMoO4

and sizably smaller, W ∼ 0.4 eV in the case of Li2VOSiO4. For

both systems the crystal field at the V site is octahedral in the

first approximation. In the case of Li2VOSiO4 the crystal-field

levels, taking the lowest as the energy zero, are (0,0.9,0.9) eV

for the t2g-like states and (2.25,2.4) eV for the eg-like states.

The main difference between the two systems is that t1 ∼ 0.137

eV in VOMoO4 couples V between pyramids pointing away

from the interior of the layer (see pattern for J1 in Fig. 2);

this hopping is negligible in Li2VOSiO4. The LDA hopping

integral between neighboring pyramids in the same plane is t2
(see pattern for J2 in Fig. 2). We find that t2 ∼ 0.033 eV in

VOMoO4 and t2 ∼ −0.037 eV in Li2VOSiO4, i.e., its absolute

value is comparable in the two materials; the hopping t1z

between V at the center of pyramids in first nearest-neighbor

layers is also about the same in the two materials, with t1z ∼
0.012 eV in VOMoO4 and t1z ∼ −0.010 eV in Li2VOSiO4.

The first next-nearest-neighbors hopping integral along c is

tz ∼ 0.012 eV in VOMoO4 and tz ∼ 0.013 eV in Li2VOSiO4,

hence slightly less than one half of t2 in both cases. Finally, t2z,

the hopping integrals between neighboring pyramids pointing
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FIG. 5. Left: Correlated band structure of VOMoO4 and

Li2VOSiO4 for a realistic U = 5 eV, calculated at ∼200 K. The dots

are the poles of the Green function and yield the energy dispersion.

The energy gap scales linearly with U . Right: Corresponding real-axis

self-energy �(ω).

in the same direction but belonging to neighboring layers, is

about 5 meV in Li2VOSiO4 and even smaller in VOMoO4.

In the absence of an accurate experimental determination

of the gap and, to the best of our knowledge, of experiments

probing the spectral function, we calculate the correlated

bands, the spectral function, the effective local spin, and the

magnetic response function for several values of the screened

Coulomb repulsion U . The spectral functions are shown in

Fig. 4. We find that VOMoO4 becomes an insulator for U

between 1.5 and 2 eV, and Li2VOSiO4 for slightly smaller

values, between 0.5 and 1 eV. Thus in the rest of the paper

we focus on the range 2 < U < 5 eV in particular. As we will

see in Sec. III C, U ∼ 5 eV yields Curie-Weiss temperatures

in very good agreement with experiments for both materials;

since U ∼ 5 eV is also typical value for vanadates [29],

we conclude that it is a realistic estimate for VOMoO4 and

Li2VOSiO4 as well. Experiments probing the gap and the

spectral function could put this conclusion to a test. The

correlated band structure for U ∼ 5 eV is shown in Fig. 5,

together with the corresponding self-energies on the real axis.

The figure shows that the Hubbard bands exhibit the dispersion

of the LDA bands.

B. Static magnetic susceptibility

Let us start with analyzing the case of VOMoO4. The

DMFT static magnetic susceptibility is shown in Fig. 6 for

U ∼ 5 eV and T ∼ 380 K, well above TN in the paramagnetic

phase. Including the vertex correction turns out to be crucial.

The χ0(q; 0) term alone is weakly temperature dependent; by

analyzing our LDA+DMFT results we find that χ0(q; 0) is
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FIG. 6. VOMoO4: Static magnetic susceptibility χ (q; 0)/χA(0)

in the qx,qy plane for representative values of qz, T ∼ 380 K (T ≫
TN ) and U = 5 eV; χA(0) ∼ µ2

eff/kBT is the atomic susceptibility

in the local spin (large βU ) limit. For each value of qz, the top

panel shows the result without vertex correction and the bottom panel

that with vertex correction. The special points in the qx,qy plane are

Ŵ1 = (2π,0), X = (π,0), and M = (π,π ).

approximately given by the expression obtained by replacing

in the Green functions in Eq. (3) the self-energy with its atomic

limit, with U renormalized by a factor r0,

�(iωn) ∼
r2

0 U 2

4

1

iωn

.

The factor r0 can be obtained by fitting the actual self-energy.

After performing analytically the Matsubara sums, we find, in

the large βU limit (for more details see the Appendix)

χ0(q; 0) ∼
µ2

eff

U

[
1 −

1

2U

(
Jr0

(0) +
1

2
Jr0

(q)

)]
, (5)

where

Jr0
(q) = (χ0(q; 0))−1 − (χ0(0))−1 = JSPT(q)/2r2

0 ,

and µeff = gµB

√
S(S + 1)/3, where S is the effective local

spin (for fully localized moments, S = 1/2). In this expression

JSPT(q) is the magnetic coupling obtained via many-body

second-order perturbation theory, accounting, however, not

only for J1 and J2 but also for long range exchange couplings.

It is given by

JSPT(q) ∼ 4J1 cos
qx

2
cos

qy

2

[
1 + 2

J1z

J1

cos qz +
(

J1z

J1

)2
]1/2

+ 2J2(cos qx + cos qy)

+ 2Jz cos qz + 4J2z(cos qx + cos qy) cos qz + · · · ,

(6)

where Ji ∼ 4t2
i /U . For VOMoO4 we find that the renor-

malization factor r0 ∼ 1. The expression Eq. (5) shows that

χ0(q; 0) does not exhibit the Curie-Weiss temperature behavior

associated with a local-moment system, and the effective

magnetic exchange coupling extracted from χ0(q; 0) is about

a factor 2 smaller than in second-order perturbation theory.

The DMFT vertex correction has several effects. First, via

the Bethe-Salpeter equation it enhances the susceptibility in

a slightly nonuniform way. Then, it yields a high-temperature

Curie-Weiss-like behavior, so that χ (q; 0) ∼ µ2
eff/(T − Tq),

where Tq is a generalized Curie-Weiss temperature. It follows

from this that we can define the magnetic coupling as J (q) =
−Tq/µ

2
eff . In first approximation we find J (q) ∼ Jr (q) and the

value of the renormalization factor is reduced from r0 ∼ 1

to r ∼ 0.7. Thus our results show that for VOMoO4, in

first approximation, Jr (q) ∼ JSPT(q). Furthermore, we find

that the local susceptibility is close to the atomic magnetic

susceptibility, and the effective static local vertex Ŵ(0) is

approximately given by

Ŵ(0) ∼
1

µ2
eff

[
U

(
1 +

1

2U
Jr (0)

)
− kBT

]
.

Remarkably, in the large temperature limit the r factor can

be estimated expanding the Bethe-Salpeter equation (in the

matrix form) around the atomic limit

χ (q; 0) ∼ χA(0) −
r2

0

r2
χA(0) Jr0

(q) χA(0),

where

r2
0

r2
∼

1

β2

∑

nn′

[χA(0)Jr0
(q)χA(0)]n,n′

χA(0)Jr0
(q)χA(0)

(7)

and

[
Jr0

(q)
]
n,n

= [(χ0(q; 0))−1 − (χ0(0))−1]n,n.

The analytic expression of the atomic susceptibility matrix

is given for completeness in the Appendix. This yields for

VOMoO4 a renormalization factor r ∼ 0.7, close to the actual

value obtained from fitting the DMFT data.

The susceptibility of Li2VOSiO4 is shown in Fig. 7. The

conclusions are similar as for VOMoO4; the susceptibility

jumps from about zero without vertex correction to about 1

(in units of the atomic susceptibility) with vertex correction.

The renormalization parameters are slightly larger than in

VOMoO4, r0 ∼ 1.1 and r ∼ 0.84. For both Li2VOSiO4 and

VOMoO4 we find that at q = qX ≡ (0,π,π/2) the magnetic

susceptibility χ (qX; 0) ∼ χA(0) ∼ µ2
eff/kBT , indicating that

J (qX) is basically zero.
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FIG. 7. Li2VOSiO4: Static uniform magnetic susceptibility

χ (q; 0)/χA(0) in the qx,qy plane for representative values of qz,

T ∼ 380 K (T ≫ TN ) and U = 5 eV; χA(0) ∼ µ2
eff/kBT is the atomic

susceptibility in the local spin (large βU ) limit. For each value of

qz, the top panel shows the result without vertex correction and the

bottom panel that with vertex correction. The special points in the

qx,qy plane are Ŵ1 = (2π,0), X = (π,0), and M = (π,π ).

C. Uniform Curie-Weiss temperature and effective

magnetic moments

The inverse high-temperature susceptibility obtained with

the LDA+DMFT approach exhibits a linear dependence on T

in a wide temperature range, for all q (see Fig. 8 for q = 0)

and for a remarkably large set of U values. It is thus natural

to define the actual Curie-Weiss temperature as TCW = −T0.

For U ∼ 5 eV we find TCW ∼ 191 K for VOMoO4 and

TCW ∼ 8 K in Li2VOSiO4, in very good agreement with

NMR measurements, 155 ± 20 K for VOMoO4 [4] and

8.2 ± 1 K for Li2VOSiO4 [2,3]. This comparison confirms

the strength of our approach. Next, we calculate the effective

magnetic moment from the static magnetic susceptibility in

the T → ∞ limit, µeff ∼ limT →∞
√

(T + TCW)χ (0), and also

directly from the equal time correlation function matrix. The

result obtained from the second approach is shown in Fig. 9.

We find that for U = 5 eV in both systems this moment is

quite close to S = 1/2, indicating that charge fluctuations are

small for this (realistic) U value. Thus, if U ∼ 5 eV, charge

fluctuations do not reduce S enough to explain alone the small
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FIG. 8. Inverse uniform static magnetic susceptibility for

VOMoO4 and Li2VOSiO4. The lines are a least-square fit of the

calculated points; the intersect with the temperature axis yields the

Curie-Weiss temperature TCW. For a realistic U ∼ 5 eV we obtain

TCW ∼ 191 K for VOMoO4 and 8 K for Li2VOSiO4. We find a linear

behavior also for relatively small values of U .

staggered magnetic moment m reported in neutron-scattering

experiments [25]; they could however play a role if the gap was

smaller (i.e., U ∼ 2 eV). An experimental determination of the

gap and the spectral function would be therefore desirable to

reach the final conclusions. Interestingly we observe sizable

effective local spins even deep in the (hypothetical) metallic

regime, with S ∼ 0.436 for VOMoO4 for U = 1 eV, to be

compared with S ∼ 0.498 for U = 5 eV. For Li2VOSiO4 the

0
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FIG. 9. Normalized local spin-spin correlation function 4〈SzSz〉
as a function of U ; the points are calculated at ∼200 K but change little

when the temperature is raised to 380 K. The spin-spin correlation

function yields the effective local spin S [25]; in particular, a local spin

S = 1/2 corresponds to 4〈SzSz〉 = 1. Squares: VOMoO4; circles:

Li2VOSiO4.
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effective spin is ∼1/2 in the whole range of U values because

the system is on the verge of the metal-insulator transition

already for U ∼ 0.5 eV.

D. Magnetic superexchange couplings

As previously discussed, in first approximation we find

that the LDA+DMFT magnetic coupling is given by J (q) ∼
Jr (q). To a closer look nontrivial many-body effects partially

modify also the q dependence. This can be understood from

a reexamination of the approximate renormalization factor

r2
0 /r2 given in Eq. (7), which is, in principle, q dependent. Let

us here focus on two aspects, the degree of two-dimensional

frustration and the interlayer coupling. A measure of the degree

of frustration is the ratio J2/J1. Since even in the general case

the exchange coupling has an expansion of the type (6), ratio

J2/J1 can be approximately written as

J2/J1 ∼ −
χ (qM ; 0)−1 − χ (qX; 0)−1

χ (q1; 0)−1 + χ (q2; 0)−1 − 2χ (qX; 0)−1
,

where q1 = (π/2,π/2,0), q2 = (π/2,π/2,π ), qM =
(π,π,π/2), and qX = (0,π,π/2). We find that, in the

full range U ∼ 2–5 eV the ratio J2/J1 is weakly temperature

dependent and only slightly U dependent, in line with the

weak charge fluctuation picture and indicating that corrections

beyond O(U−1) are weak. In the case of VOMoO4 for

U ∼ 5 eV we obtain J2/J1 ∼ 0.06, a value close, but slightly

larger than the ratio obtained via LDA and perturbation theory.

For Li2VOSiO4 the value J2/J1 ∼ 10 is partially reduced with

respect the LDA value J2/J1 ∼ 12. Such a 20% reduction is

not sufficient to drive the system out of the weak frustration

regime. It is worth noting, however, that such a change is

comparable with the reduction reported in high-pressure

studies up to 7.6 GPa on the basis of LDA calculations [21].

This indicates that it might be interesting to push the pressure

even higher; everything else remaining the same, J2/J1 could

move under pressure closer to the spin-liquid regime than it

was previously estimated.

The actual phase transition to three-dimensional antifer-

romagnetic order crucially depends on the coupling between

planes [36], hence it is important to study the degree of three

dimensionality as well. Let us define the average interplane

coupling as J⊥ ∼ 1
7
(Jz + 2J1z + 4J2z) and the degree of three

dimensionality as f⊥ = 2J⊥/(J2 + J1). The latter can be

estimated as

f⊥ ∼ −
χ (Ŵ; 0)−1 − χ (Z; 0)−1

χ (qM ; 0)−1 − χ (qX; 0)−1

2J2/J1

7(1 + J2/J1)
,

where Z = (0,0,π ) and Ŵ = (0,0,0). Remarkably, also f⊥
is weakly temperature dependent. For both VOMoO4 and

Li2VOSiO4 the value of f⊥ is slightly larger with respect

to the LDA value. Furthermore, in the case of VOMoO4 we

find that 2J1z and Jz + 4J2z are comparable, with 2J1z slightly

larger; instead, in Li2VOSiO4 we find that 2J1z is smaller than

the sum Jz + 4J2z.

Finally, we investigated nonlocal effects on the exchange

couplings via cellular DMFT (cDMFT), always in the T ≫ TN

limit. In particular, we perform two-sites cDMFT calculations,

which should already give strong effects; we restore the full

3D periodicity of the original lattice on the susceptibility

directly, at the end of the calculation. Remarkably, in the

high-temperature regime, relevant to extract the effective

exchange couplings, we find no sizable changes in J (q), in the

ratio J2/J1 or 2J⊥/(J2 + J1). This is perhaps due to the fact

that V sites have, despite of the layered structure, a relatively

large coordination number. The overall effective coupling J (q)

is partially reduced with respect to single-site DMFT; this

reduction is slightly larger in the case of VOMoO4, with a

reduction factor ∼0.95.

Putting all our results together, our LDA+DMFT calcula-

tions support a weakly frustrated picture and magnetic order

in three dimensions at low temperature. In VOMoO4 the mag-

netic coupling J (q) points to an instability at qC = (2π,0,0),

i.e., the Ŵ1 point in the qz = 0 panel of Fig. 6. This corre-

sponds to Néel antiferromagnetic order in the ab plane and

ferromagnetic stacking along the c axis (2J1z � Jz + 4J2z).

In Li2VOSiO4 the critical vector is qC = (π,π,π ), yielding

collinear order in the ab plane and antiferromagnetic stacking

along the c axis (Jz + 4J2z � 2J1z). Thus, in the ab plane, the

magnetic instabilities predicted via LDA+DMFT are in full

agreement with those reported experimentally [22,23]; along

c, instead, apparently neutron-scattering experiments [23]

yield ferromagnetic stacking in Li2VOSiO4; this suggests that

either the interplane ferromagnetic local Coulomb exchange

dominates over superexchange, reversing the sign of 2J1z −
Jz − 4J2z, or that, most likely, the structural changes observed

around TN modify the relative weights of 2J1z and Jz + 4J2z.

Since to the best of our knowledge no detailed structural data

are yet available across the magnetic transition, we cannot

identify which of the two mechanisms actually dominates [37].

IV. CONCLUSIONS

In this work we study the electronic and magnetic proper-

ties of two materials regarded as paradigmatic realizations

of the square-lattice two-dimensional quantum Heisenberg

model, Li2VOSiO4 and VOMoO4. To do this we adopt the

LDA+DMFT approach and its cluster extension. We calculate

the magnetic susceptibility in the local-vertex approximation

and in the high-temperature (T ≫ TN ) regime. This enables

us to calculate the effective magnetic moments and to extract

the actual effective superexchange coupling J (q), i.e., to

systematically build the realistic quantum-Heisenberg model

associated with the two systems. This approach yields Curie-

Weiss temperatures in excellent agreement with experiments.

For realistic values of U we find no sizable charge fluctuations

and well defined S ∼ 1/2 effective local moments. We derive a

practical approximated expression for the local vertex and the

susceptibility, which can be used to analyze other frustrated

Mott insulators, and extended, e.g., to multiband systems. By

analyzing our results for J (q), we find that both systems are

only partially well described by the quantum two-dimensional

J1-J2 Heisenberg model; long-range couplings, in particular

in the third dimension, play an important role. Our results

support for both systems the weak frustration picture, with

three-dimensional order below the critical temperature. This

level of in-plane frustration, although weak, together with

small long-range couplings, could alone explain (see, e.g.,

studies of the 2D Heisenberg models in Refs. [7–10]) the

partial reduction of ordered magnetic moments observed via

075112-7



AMIN KIANI AND EVA PAVARINI PHYSICAL REVIEW B 94, 075112 (2016)

neutrons scattering experiments [22,23]. In the ab plane,

our calculations indicate collinear order for Li2VOSiO4 and

Néel order for VOMoO4, in line with neutron-scattering

experiments. The delicate balance between the small but

competing interactions along the c direction suggests that the

layered vanadates are close to an effective zero coupling (or

high frustration) in the third dimension (2J1z − Jz − 4J2z ∼
0); for this reason they behave as effectively two-dimensional

systems in a wide temperature range. Structural distortions at

TN are likely to be essential to determining the actual type of

stacking along the c axis. Finally, we point out the analogies of

the low-energy electronic structure (t − t ′ one-band model)

of these layered vanadates with that of high-temperature

cuprate superconductors [24]; in that view it would be

interesting to study experimentally the effects of electron or

hole doping.
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APPENDIX

1. Fourier transform of G(τ ′
,τ

′′)

To perform the Fourier transform of G(τ ′,τ ′′), needed

to calculate the local response function, we proceed as

follows. We construct inside the QMC block a new Green

function G̃(τ + τ ′′,τ ′′), whose discontinuities are shifted on

the boundaries, i.e., at τ = 0 and τ = β

G̃(τ + τ ′′,τ ′′) =
{

G(τ + τ ′′,τ ′′), τ + τ ′′ < β,

−G(τ + τ ′′ − β,τ ′′), τ + τ ′′ � β,

where G̃ is β periodic in τ ′′ and β antiperiodic in τ . The

Fourier transform of G can be expressed as a function of G̃ as

follows:

G(νn,νn′ ) =
∫∫

dτ ′dτ ′′eiνnτ
′−iνn′ τ ′′

G(τ ′,τ ′′)

=
∫∫

dτdτ ′′eiνnτ+i(νn−νn′ )τ ′′
G̃(τ + τ ′′,τ ′′),

where the integrals are in the interval [0,β]. We calculate it by

using the two-dimensional Filon-trapezoidal method [38,39].

We split the interval [0,β] in L time slices τl = l
τ with l =
0, . . . ,L, 
τ = β/L and approximate the G̃(τ + τ ′′,τ ′′) by

a piecewise polynomial function in the interval τ ∈ [τl1 ,τl1 +

τ ] and τ ′′ ∈ [τl2 ,τl2 + 
τ ],

G̃(τ + τ ′′,τ ′′) ∼ G̃l1,l2 +
(
τ − τl1

)G̃l1+1,l2 − G̃l1,l2


τ

+
(
τ ′′ − τl2

)G̃l1,l2+1 − G̃l1,l2


τ

+
(
τ − τl1

)(
τ ′′ − τl2

)

×
G̃l1+1,l2+1 − G̃l1+1,l2 − G̃l1,l2+1 + G̃l1,l2


τ 2

+ · · · ,
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FIG. 10. Fourier transform of a typical Green function. Top:

Real part. Bottom: Imaginary part. Full lines: Numerically exact

Green function, calculated via a spline at the end of the QMC run.

Open circles: Fourier transform of the Green function calculated

after moving the singularities to the border and using then the

Filon-trapezoidal method. These results are obtained for 
τ ∼ 0.17.

The error remains less than 5% even for 
τ ∼ 0.33, twice as large.

where G̃l1,l2 = G̃(τl1 + τl2 ,τl2 ). Through this approximation

G(νn,νn′ ) ≈
∑

l1l2

wl1 (θ1)wl2 (θ2)ei(νn−νn′ )τl2
+iνnτl1 G̃l1,l2 ,

where θ1 = 
τνn, θ2 = 
τ (νn − νn′ ) and

wl(θ ) =





w0(θ ) = 
τ
[

1+iθ−eiθ

θ2

]
, l = 0,

wL(θ ) = w0(−θ ), l = L,

w0(θ ) + wL(θ ), l �= 0,L.

Thanks to the shift of the singularities to the border we

automatically recover the proper limit at equal times

G̃(τ + τ ′′,τ ′′) → G̃(0+,0),

as well as the correct 1/νn decay of G(νn,νn). This is shown

in Fig. 10 for a test case. The Fourier transform based on

the Filon-trapezoidal deviates from the exact result at νp =
2πM/
τ , where M is an integer; the actual error decreases

with increasing M . At these frequencies, for typical values of

β/L, due to the prefactor wl(θ1)wl′(θ2), the Green function

G(iνn,iνn) is already small even for M = 1.
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2. Atomic susceptibility

The atomic magnetic susceptibility matrix for an idealized

one-level atom is given by
[

χA(0)

(gµBS)2

]

n,n′
= Mn′

dMn

dy
+ Mn

dMn′

dy

+ δm,0βn(−y)MnMn′

−βn(y)[δn,n′ + δn,−n′ ]
dMn

dy

−
1

y
{Mn′ − β[n(y)δn,−n′ − n(−y)δn,n′ ]}Mn,

where y = U/2, S = 1/2 is the spin, ωm is a bosonic Matsub-

ara frequency, νn, νn′ are fermionic Matsubara frequencies,

n(y) is the Fermi function, and

Mn =
1

iνn − y
−

1

iνn + y
.

By summing over all fermionic frequencies we have

χA(ωm) =
1

β2

∑

nn′

[χA(ωm)]n,n′ =
(gµBS)2

kBT

eβU/2

1 + eβU/2
δm,0.

In the large βU limit

χA(0) ∼
(gµBS)2

kBT
.

3. Susceptibility tensor χ (q; 0) in the large U limit

Here we derive an approximate analytic form for the

LDA+DMFT magnetic susceptibility, valid in the very large

U limit. The static magnetic susceptibility is a tensor with

elements [χ (q; 0)]ii ′,jj ′ , where the indices i,i ′,j , and j ′ label

the Nc equivalent V sites in the unit cell (cluster). In the case

of the systems considered in this work Nc = 2; the relevant

elements of the static magnetic susceptibility tensor thus built

the Hermitian matrix

χ (q; 0) =

(
[χ (q; 0)]11,11 [χ (q; 0)]11,22

[χ (q; 0)]22,11 [χ (q; 0)]22,22

)
,

where by symmetry [χ (q; 0)]11,11 = [χ (q; 0)]22,22. The

χ0(q; 0) tensor has the same structure. For the latter we can

write the elements explicitly

[χ0(q; 0)]ii,jj = −
1

4β

1

Nk

∑

nkσ

Gσ
ij (k; iνn)Gσ

ji(k + q; iνn),

where Gσ
ij (k; iνn) is the Green-function matrix. In the large

U limit, we can assume that the local self-energy matrix is

atomiclike, i.e., that it has the form

�ij (iνn) = δij

r2U 2

4

1

iνn

,

where r is a material-specific renormalization factor. By

replacing the elements of the self-energy matrix in the

Green function with this approximated expression and then

performing the Matsubara sums we obtain the elements of the

χ0(q; 0) tensor. Finally, from this we calculate the magnetic

coupling matrix

Jr (q) = [χ0(q; 0)]−1 − [χ0(0)]−1.

We obtain that, in first approximation,

J ij
r (q) ≡ [Jr (q)]ii,jj ∼ [JSPT(q)]ii,jj/2r2.

The elements of the second-order perturbation theory (SPT)

exchange coupling tensor are

[JSPT(q)]11,11 = 2J2(cos qx + cos qy) + 2Jz cos qz

+ 4J2z(cos qx + cos qy) cos qz

and

[JSPT(q)]11,22 = 4(J1 + J1ze
iqzc) cos

qx

2
cos

qy

2
eiq·(R1−R2),

where Ri are cluster lattice vectors. To calculate χ (q; 0) we

still need the local susceptibility. It turns out that, to a good

approximation, the latter is also atomiclike

χii,jj (0) = χA(0)δi,j ,

and χA(0) ∼ µ2
eff/kBT . We can now solve analytically the

Bethe-Salpeter equation matrix in the local-vertex approxima-

tion, and obtain

[χ (q; 0)]−1 = Jr (q) + [χ (0)]−1.

The components of the tensor χ (q; 0) are

2[χ (q; 0)]ii,jj

T χA(0)
∼

[
1

T + µ2
eff

(
J 11

r (q) + J̃ 12
r (q)

)

+
(−1)i+j

T + µ2
eff

(
J 11

r (q) − J̃ 12
r (q)

)
]
eiq·(Ri−Rj ),

where J̃ 12
r (q) =

√
J 12

r (q)J 21
r (q). Finally, we restore the peri-

odicity and obtain the static lattice magnetic susceptibility

χ (q; 0) =
1

2

Nc∑

ij

[χ (q; 0)]ii,jje
−iq·(Ri−Rj ) ∼

µ2
eff

T − Tq

,

where Tq = −µ2
eff[J

11
r (q) + J̃ 12

r (q)].
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Modeling and Simulation, Vol. 4. Open access at:

http://www.cond-mat.de/events/correl.html or at http://juser.fz-

juelich.de/record/155829.

[35] M. Jarrell, Phys. Rev. Lett. 69, 168 (1992).

[36] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev.

Lett. 60, 1057 (1988).

[37] Notice that a small error in the relative weights of 2J1z and Jz +
4J2z affects little the Curie-Weiss temperature, which averages

over all couplings.

[38] G. Dahlquist and A. Björck, Numerical Methods in Scientific

Computing (Society for Industrial and Applied Mathematics,

Philadelphia, 2007), Vol. 1.

[39] The Filon-trapezoidal method was also used in O. Gunnarsson,

G. Sangiovanni, A. Valli, and M. W. Haverkort, Phys. Rev. B

82, 233104 (2010).

075112-10


