001     861467
005     20210130000824.0
024 7 _ |a 10.3389/fnagi.2019.00057
|2 doi
024 7 _ |a 2128/21853
|2 Handle
024 7 _ |a pmid:30930768
|2 pmid
024 7 _ |a WOS:000461685400001
|2 WOS
024 7 _ |a altmetric:57043763
|2 altmetric
037 _ _ |a FZJ-2019-01932
082 _ _ |a 610
100 1 _ |a Lorio, Sara
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a The Combination of DAT-SPECT, Structural and Diffusion MRI Predicts Clinical Progression in Parkinson’s Disease
260 _ _ |a Lausanne
|c 2019
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552655533_21969
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a FUNDINGData used in the preparation of this article were obtainedfrom the PPMI database (www.ppmi-info.org/data). For up-to-date information on the study, visit www.ppmi-info.org.PPMI – a public-private partnership – is funded by theMichael J. Fox Foundation for Parkinson’s Research andfunding partners, including Abbvie, Avid Radiopharmaceuticals,Biogen Idec, Briston-Myers Squibb, Covance, GE Healthcare,Genentech, GlaxoSmithKline, Lilly, Lundbeck, Merck, MesoScale Discovery, Pfizer, Piramal, Roche, and UCB. SL wassupported by the National Institute for Health ResearchBiomedical Research Centre at Great Ormond Street Hospitalfor Children NHS Foundation Trust, The Henry Smith Charity,and Action Medical Research (GN2214). BD was supportedby the Swiss National Science Foundation (project grant no.32003B_159780 and SPUM 33CM30_140332/1), FoundationParkinson Switzerland, Foundation Synapsis. LREN is gratefulto the Roger de Spoelberch and the Partridge Foundations fortheir generous support
520 _ _ |a There is an increasing interest in identifying non-invasive biomarkers of disease severityand prognosis in idiopathic Parkinson’s disease (PD). Dopamine-transporter SPECT(DAT-SPECT), diffusion tensor imaging (DTI), and structural magnetic resonance imaging(sMRI) provide unique information about the brain’s neurotransmitter and microstructuralproperties. In this study, we evaluate the relative and combined capability of theseimaging modalities to predict symptom severity and clinical progression inde novoPDpatients. To this end, we used MRI, SPECT, and clinical data ofde novodrug-naïvePD patients (n= 205, mean age 61±10) and age-, sex-matched healthy controls(n= 105, mean age 58±12) acquired at baseline. Moreover, we employed clinical dataacquired at 1 year follow-up for PD patients with or withoutL-Dopa treatment in orderto predict the progression symptoms severity. Voxel-based group comparisons andcovariance analyses were applied to characterize baseline disease-related alterations forDAT-SPECT, DTI, and sMRI. Cortical and subcortical alterations inde novoPD patientswere found in all evaluated imaging modalities, in line with previously reported midbrain-striato-cortical network alterations. The combination of these imaging alterations wasreliably linked to clinical severity and disease progression at 1 year follow-up in thispatient population, providing evidence for the potential use of these modalities asimaging biomarkers for disease severity and prognosis that can be integrated intoclinical trials.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sambataro, Fabio
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bertolino, Alessandro
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Draganski, Bogdan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Dukart, Jürgen
|0 P:(DE-Juel1)177727
|b 4
|u fzj
773 _ _ |a 10.3389/fnagi.2019.00057
|g Vol. 11, p. 57
|0 PERI:(DE-600)2558898-9
|p 57
|t Frontiers in aging neuroscience
|v 11
|y 2019
|x 1663-4365
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/861467/files/Lorio_2019%20DAT-SPECT%20DTI%20sMRI.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/861467/files/Lorio_2019%20DAT-SPECT%20DTI%20sMRI.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:861467
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)177727
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT AGING NEUROSCI : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21