000861477 001__ 861477
000861477 005__ 20230815122839.0
000861477 0247_ $$2doi$$a10.1088/1361-648X/aafc45
000861477 0247_ $$2ISSN$$a0953-8984
000861477 0247_ $$2ISSN$$a1361-648X
000861477 0247_ $$2pmid$$apmid:30616228
000861477 0247_ $$2WOS$$aWOS:000456849700003
000861477 0247_ $$2altmetric$$aaltmetric:54506863
000861477 037__ $$aFZJ-2019-01942
000861477 041__ $$aEnglish
000861477 082__ $$a530
000861477 1001_ $$0P:(DE-Juel1)165989$$aFelter, Janina$$b0
000861477 245__ $$aMomentum microscopy on the micrometer scale: photoemission micro-tomography applied to single molecular domains
000861477 260__ $$aBristol$$bIOP Publ.80390$$c2019
000861477 3367_ $$2DRIVER$$aarticle
000861477 3367_ $$2DataCite$$aOutput Types/Journal article
000861477 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1582019714_32444
000861477 3367_ $$2BibTeX$$aARTICLE
000861477 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861477 3367_ $$00$$2EndNote$$aJournal Article
000861477 520__ $$aPhotoemission tomography (PT) is a newly developed method for analyzing angularresolved photoemission data. In combination with momentum microscopy it allows fora comprehensive investigation of the electronic structure of (in particular) metal-organicinterfaces as they occur in organic electronic devices. The most interesting aspect in thiscontext is the band alignment, the control of which is indispensable for designing devices.Since PT is based on characteristic photoemission patterns that are used as fingerprints,the method works well as long as these patterns are uniquely representing the specificmolecular orbital they are originating from. But this limiting factor is often not fulfilledfor systems exhibiting many differently oriented molecules, as they may occur on highlysymmetric substrate surfaces. Here we show that this limitation can be lifted by recording thephotoemission data in a momentum microscope and limiting the probed surface area to onlya few micrometers squared, since this corresponds to a typical domain size for many systems.We demonstrate this by recording data from a single domain of the archetypal adsorbatesystem 1,4,5,8-naphthalenetetracarboxylic dianhydride on Cu(0 0 1). This proof of principleexperiment paves the way for establishing the photoemission μ-tomography method as anideal tool for investigating the electronic structure of metal-organic interfaces with so farunraveled clarity and unambiguity.
000861477 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000861477 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1
000861477 588__ $$aDataset connected to CrossRef
000861477 7001_ $$0P:(DE-Juel1)166426$$aWolters, Jana$$b1
000861477 7001_ $$0P:(DE-HGF)0$$aBocquet, François C$$b2
000861477 7001_ $$0P:(DE-Juel1)128791$$aTautz, F Stefan$$b3
000861477 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b4$$eCorresponding author
000861477 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/aafc45$$gVol. 31, no. 11, p. 114003 -$$n11$$p114003$$tJournal of physics / Condensed matter Condensed matter$$v31$$x1361-648X$$y2019
000861477 8564_ $$uhttps://juser.fz-juelich.de/record/861477/files/Felter_2019_J._Phys.__Condens._Matter_31_114003.pdf$$yRestricted
000861477 8564_ $$uhttps://juser.fz-juelich.de/record/861477/files/Felter_2019_J._Phys.__Condens._Matter_31_114003.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861477 909CO $$ooai:juser.fz-juelich.de:861477$$pVDB
000861477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165989$$aForschungszentrum Jülich$$b0$$kFZJ
000861477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b3$$kFZJ
000861477 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b4$$kFZJ
000861477 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000861477 9141_ $$y2019
000861477 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000861477 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000861477 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861477 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000861477 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2017
000861477 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861477 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861477 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861477 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861477 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861477 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861477 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861477 920__ $$lyes
000861477 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000861477 980__ $$ajournal
000861477 980__ $$aVDB
000861477 980__ $$aI:(DE-Juel1)PGI-3-20110106
000861477 980__ $$aUNRESTRICTED