001     861477
005     20230815122839.0
024 7 _ |a 10.1088/1361-648X/aafc45
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a pmid:30616228
|2 pmid
024 7 _ |a WOS:000456849700003
|2 WOS
024 7 _ |a altmetric:54506863
|2 altmetric
037 _ _ |a FZJ-2019-01942
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Felter, Janina
|0 P:(DE-Juel1)165989
|b 0
245 _ _ |a Momentum microscopy on the micrometer scale: photoemission micro-tomography applied to single molecular domains
260 _ _ |a Bristol
|c 2019
|b IOP Publ.80390
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582019714_32444
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photoemission tomography (PT) is a newly developed method for analyzing angularresolved photoemission data. In combination with momentum microscopy it allows fora comprehensive investigation of the electronic structure of (in particular) metal-organicinterfaces as they occur in organic electronic devices. The most interesting aspect in thiscontext is the band alignment, the control of which is indispensable for designing devices.Since PT is based on characteristic photoemission patterns that are used as fingerprints,the method works well as long as these patterns are uniquely representing the specificmolecular orbital they are originating from. But this limiting factor is often not fulfilledfor systems exhibiting many differently oriented molecules, as they may occur on highlysymmetric substrate surfaces. Here we show that this limitation can be lifted by recording thephotoemission data in a momentum microscope and limiting the probed surface area to onlya few micrometers squared, since this corresponds to a typical domain size for many systems.We demonstrate this by recording data from a single domain of the archetypal adsorbatesystem 1,4,5,8-naphthalenetetracarboxylic dianhydride on Cu(0 0 1). This proof of principleexperiment paves the way for establishing the photoemission μ-tomography method as anideal tool for investigating the electronic structure of metal-organic interfaces with so farunraveled clarity and unambiguity.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a DFG project 396769409 - Grundlagen der Photoemissionstomographie
|0 G:(GEPRIS)396769409
|c 396769409
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wolters, Jana
|0 P:(DE-Juel1)166426
|b 1
700 1 _ |a Bocquet, François C
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tautz, F Stefan
|0 P:(DE-Juel1)128791
|b 3
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 4
|e Corresponding author
773 _ _ |a 10.1088/1361-648X/aafc45
|g Vol. 31, no. 11, p. 114003 -
|0 PERI:(DE-600)1472968-4
|n 11
|p 114003
|t Journal of physics / Condensed matter Condensed matter
|v 31
|y 2019
|x 1361-648X
856 4 _ |u https://juser.fz-juelich.de/record/861477/files/Felter_2019_J._Phys.__Condens._Matter_31_114003.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/861477/files/Felter_2019_J._Phys.__Condens._Matter_31_114003.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:861477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165989
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)128774
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21