000861478 001__ 861478
000861478 005__ 20230815122838.0
000861478 0247_ $$2doi$$a10.1103/PhysRevX.9.011030
000861478 0247_ $$2Handle$$a2128/21859
000861478 0247_ $$2WOS$$aWOS:000458822800001
000861478 0247_ $$2altmetric$$aaltmetric:55409188
000861478 037__ $$aFZJ-2019-01943
000861478 041__ $$aEnglish
000861478 082__ $$a530
000861478 1001_ $$0P:(DE-HGF)0$$aKlein, Benedikt P.$$b0
000861478 245__ $$aMolecular Topology and the Surface Chemical Bond: Alternant Versus Nonalternant Aromatic Systems as Functional Structural Elements
000861478 260__ $$aCollege Park, Md.$$bAPS$$c2019
000861478 3367_ $$2DRIVER$$aarticle
000861478 3367_ $$2DataCite$$aOutput Types/Journal article
000861478 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1670911559_31169
000861478 3367_ $$2BibTeX$$aARTICLE
000861478 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861478 3367_ $$00$$2EndNote$$aJournal Article
000861478 520__ $$aThe interaction of carbon-based aromatic molecules and nanostructures with metals can strongly depend on the topology of their π-electron systems. This is shown with a model system using the isomers azulene, which has a nonalternant π system with a 5-7 ring structure, and naphthalene, which has an alternant π system with a 6-6 ring structure. We found that azulene can interact much more strongly with metal surfaces. On copper (111), its zero-coverage desorption energy is 1.86 eV, compared to 1.07 eV for naphthalene. The different bond strengths are reflected in the adsorption heights, which are 2.30 Å for azulene and 3.04 Å for naphthalene, as measured by the normal incidence x-ray standing wave technique. These differences in the surface chemical bond are related to the electronic structure of the molecular π systems. Azulene has a low-lying LUMO that is close to the Fermi energy of Cu and strongly hybridizes with electronic states of the surface, as is shown by photoemission, near-edge x-ray absorption fine-structure, and scanning tunneling microscopy data in combination with theoretical analysis. According to density functional theory calculations, electron donation from the surface into the molecular LUMO leads to negative charging and deformation of the adsorbed azulene. Noncontact atomic force microscopy confirms the deformation, while Kelvin probe force microscopy maps show that adsorbed azulene partially retains its in-plane dipole. In contrast, naphthalene experiences only minor adsorption-induced changes of its electronic and geometric structure. Our results indicate that the electronic properties of metal-organic interfaces, as they occur in organic (opto)electronic devices, can be tuned through modifications of the π topology of the molecular organic semiconductor, especially by introducing 5-7 ring pairs as functional structural elements.
000861478 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000861478 536__ $$0G:(GEPRIS)396769409$$aDFG project 396769409 - Grundlagen der Photoemissionstomographie $$c396769409$$x1
000861478 588__ $$aDataset connected to CrossRef
000861478 7001_ $$0P:(DE-HGF)0$$avan der Heijden, Nadine J.$$b1
000861478 7001_ $$0P:(DE-HGF)0$$aKachel, Stefan R.$$b2
000861478 7001_ $$0P:(DE-Juel1)161374$$aFranke, Markus$$b3
000861478 7001_ $$0P:(DE-HGF)0$$aKrug, Claudio K.$$b4
000861478 7001_ $$0P:(DE-HGF)0$$aGreulich, Katharina K.$$b5
000861478 7001_ $$0P:(DE-HGF)0$$aRuppenthal, Lukas$$b6
000861478 7001_ $$0P:(DE-Juel1)164365$$aMüller, Philipp$$b7
000861478 7001_ $$0P:(DE-HGF)0$$aRosenow, Phil$$b8
000861478 7001_ $$0P:(DE-Juel1)172608$$aParhizkarmazinani, Shayan$$b9
000861478 7001_ $$0P:(DE-Juel1)167128$$aPosseik, Francois$$b10$$ufzj
000861478 7001_ $$0P:(DE-HGF)0$$aSchmid, Martin$$b11
000861478 7001_ $$0P:(DE-HGF)0$$aHieringer, Wolfgang$$b12
000861478 7001_ $$0P:(DE-HGF)0$$aMaurer, Reinhard J.$$b13
000861478 7001_ $$0P:(DE-HGF)0$$aTonner, Ralf$$b14
000861478 7001_ $$0P:(DE-Juel1)128774$$aKumpf, Christian$$b15
000861478 7001_ $$0P:(DE-HGF)0$$aSwart, Ingmar$$b16
000861478 7001_ $$0P:(DE-HGF)0$$aGottfried, J. Michael$$b17$$eCorresponding author
000861478 773__ $$0PERI:(DE-600)2622565-7$$a10.1103/PhysRevX.9.011030$$gVol. 9, no. 1, p. 011030$$n1$$p011030$$tPhysical review / X Expanding access X$$v9$$x2160-3308$$y2019
000861478 8564_ $$uhttps://juser.fz-juelich.de/record/861478/files/PhysRevX.9.011030.pdf$$yOpenAccess
000861478 8564_ $$uhttps://juser.fz-juelich.de/record/861478/files/PhysRevX.9.011030.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861478 909CO $$ooai:juser.fz-juelich.de:861478$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172608$$aForschungszentrum Jülich$$b9$$kFZJ
000861478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167128$$aForschungszentrum Jülich$$b10$$kFZJ
000861478 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128774$$aForschungszentrum Jülich$$b15$$kFZJ
000861478 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000861478 9141_ $$y2019
000861478 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861478 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000861478 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV X : 2017
000861478 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bPHYS REV X : 2017
000861478 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000861478 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000861478 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000861478 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861478 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861478 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861478 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000861478 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000861478 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861478 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861478 920__ $$lyes
000861478 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lQuantum Nanoscience$$x0
000861478 980__ $$ajournal
000861478 980__ $$aVDB
000861478 980__ $$aI:(DE-Juel1)PGI-3-20110106
000861478 980__ $$aUNRESTRICTED
000861478 9801_ $$aFullTexts