001     861478
005     20230815122838.0
024 7 _ |a 10.1103/PhysRevX.9.011030
|2 doi
024 7 _ |a 2128/21859
|2 Handle
024 7 _ |a WOS:000458822800001
|2 WOS
024 7 _ |a altmetric:55409188
|2 altmetric
037 _ _ |a FZJ-2019-01943
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Klein, Benedikt P.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Molecular Topology and the Surface Chemical Bond: Alternant Versus Nonalternant Aromatic Systems as Functional Structural Elements
260 _ _ |a College Park, Md.
|c 2019
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1670911559_31169
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The interaction of carbon-based aromatic molecules and nanostructures with metals can strongly depend on the topology of their π-electron systems. This is shown with a model system using the isomers azulene, which has a nonalternant π system with a 5-7 ring structure, and naphthalene, which has an alternant π system with a 6-6 ring structure. We found that azulene can interact much more strongly with metal surfaces. On copper (111), its zero-coverage desorption energy is 1.86 eV, compared to 1.07 eV for naphthalene. The different bond strengths are reflected in the adsorption heights, which are 2.30 Å for azulene and 3.04 Å for naphthalene, as measured by the normal incidence x-ray standing wave technique. These differences in the surface chemical bond are related to the electronic structure of the molecular π systems. Azulene has a low-lying LUMO that is close to the Fermi energy of Cu and strongly hybridizes with electronic states of the surface, as is shown by photoemission, near-edge x-ray absorption fine-structure, and scanning tunneling microscopy data in combination with theoretical analysis. According to density functional theory calculations, electron donation from the surface into the molecular LUMO leads to negative charging and deformation of the adsorbed azulene. Noncontact atomic force microscopy confirms the deformation, while Kelvin probe force microscopy maps show that adsorbed azulene partially retains its in-plane dipole. In contrast, naphthalene experiences only minor adsorption-induced changes of its electronic and geometric structure. Our results indicate that the electronic properties of metal-organic interfaces, as they occur in organic (opto)electronic devices, can be tuned through modifications of the π topology of the molecular organic semiconductor, especially by introducing 5-7 ring pairs as functional structural elements.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|x 0
|f POF III
536 _ _ |a DFG project 396769409 - Grundlagen der Photoemissionstomographie
|0 G:(GEPRIS)396769409
|c 396769409
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a van der Heijden, Nadine J.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kachel, Stefan R.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Franke, Markus
|0 P:(DE-Juel1)161374
|b 3
700 1 _ |a Krug, Claudio K.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Greulich, Katharina K.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Ruppenthal, Lukas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Müller, Philipp
|0 P:(DE-Juel1)164365
|b 7
700 1 _ |a Rosenow, Phil
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Parhizkarmazinani, Shayan
|0 P:(DE-Juel1)172608
|b 9
700 1 _ |a Posseik, Francois
|0 P:(DE-Juel1)167128
|b 10
|u fzj
700 1 _ |a Schmid, Martin
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hieringer, Wolfgang
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Maurer, Reinhard J.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Tonner, Ralf
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Kumpf, Christian
|0 P:(DE-Juel1)128774
|b 15
700 1 _ |a Swart, Ingmar
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Gottfried, J. Michael
|0 P:(DE-HGF)0
|b 17
|e Corresponding author
773 _ _ |a 10.1103/PhysRevX.9.011030
|g Vol. 9, no. 1, p. 011030
|0 PERI:(DE-600)2622565-7
|n 1
|p 011030
|t Physical review / X Expanding access X
|v 9
|y 2019
|x 2160-3308
856 4 _ |u https://juser.fz-juelich.de/record/861478/files/PhysRevX.9.011030.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/861478/files/PhysRevX.9.011030.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:861478
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)172608
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)167128
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)128774
913 1 _ |a DE-HGF
|b Energie
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV X : 2017
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b PHYS REV X : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Quantum Nanoscience
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21