000861490 001__ 861490
000861490 005__ 20210130000828.0
000861490 0247_ $$2doi$$a10.1186/s12880-018-0283-3
000861490 0247_ $$2Handle$$a2128/21949
000861490 0247_ $$2pmid$$apmid:30400875
000861490 0247_ $$2WOS$$aWOS:000449349600002
000861490 0247_ $$2altmetric$$aaltmetric:50976482
000861490 037__ $$aFZJ-2019-01951
000861490 082__ $$a610
000861490 1001_ $$00000-0002-4946-3837$$aBaran, Jakub$$b0$$eCorresponding author
000861490 245__ $$aAccurate hybrid template–based and MR-based attenuation correction using UTE images for simultaneous PET/MR brain imaging applications
000861490 260__ $$aLondon$$bBioMed Central$$c2018
000861490 3367_ $$2DRIVER$$aarticle
000861490 3367_ $$2DataCite$$aOutput Types/Journal article
000861490 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553886874_25990
000861490 3367_ $$2BibTeX$$aARTICLE
000861490 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861490 3367_ $$00$$2EndNote$$aJournal Article
000861490 520__ $$aBackgroundAttenuation correction is one of the most crucial correction factors for accurate PET data quantitation in hybrid PET/MR scanners, and computing accurate attenuation coefficient maps from MR brain acquisitions is challenging. Here, we develop a method for accurate bone and air segmentation using MR ultrashort echo time (UTE) images.MethodsMR UTE images from simultaneous MR and PET imaging of five healthy volunteers was used to generate a whole head, bone and air template image for inclusion into an improved MR derived attenuation correction map, and applied to PET image data for quantitative analysis. Bone, air and soft tissue were segmented based on Gaussian Mixture Models with probabilistic tissue maps as a priori information. We present results for two approaches for bone attenuation coefficient assignments: one using a constant attenuation correction value; and another using an estimated continuous attenuation value based on a calibration fit. Quantitative comparisons were performed to evaluate the accuracy of the reconstructed PET images, with respect to a reference image reconstructed with manually segmented attenuation maps.ResultsThe DICE coefficient analysis for the air and bone regions in the images demonstrated improvements compared to the UTE approach, and other state-of-the-art techniques. The most accurate whole brain and regional brain analyses were obtained using constant bone attenuation coefficient values.ConclusionsA novel attenuation correction method for PET data reconstruction is proposed. Analyses show improvements in the quantitative accuracy of the reconstructed PET images compared to other state-of-the-art AC methods for simultaneous PET/MR scanners. Further evaluation is needed with radiopharmaceuticals other than FDG, and in larger cohorts of participants.
000861490 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000861490 588__ $$aDataset connected to CrossRef
000861490 7001_ $$aChen, Zhaolin$$b1
000861490 7001_ $$aSforazzini, Francesco$$b2
000861490 7001_ $$aFerris, Nicholas$$b3
000861490 7001_ $$aJamadar, Sharna$$b4
000861490 7001_ $$aSchmitt, Ben$$b5
000861490 7001_ $$aFaul, David$$b6
000861490 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b7$$ufzj
000861490 7001_ $$aCholewa, Marian$$b8
000861490 7001_ $$aEgan, Gary F.$$b9
000861490 773__ $$0PERI:(DE-600)2061975-3$$a10.1186/s12880-018-0283-3$$gVol. 18, no. 1, p. 41$$n1$$p41$$tBMC medical imaging$$v18$$x1471-2342$$y2018
000861490 8564_ $$uhttps://juser.fz-juelich.de/record/861490/files/s12880-018-0283-3.pdf$$yOpenAccess
000861490 8564_ $$uhttps://juser.fz-juelich.de/record/861490/files/s12880-018-0283-3.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000861490 909CO $$ooai:juser.fz-juelich.de:861490$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000861490 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b7$$kFZJ
000861490 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000861490 9141_ $$y2019
000861490 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861490 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000861490 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBMC MED IMAGING : 2017
000861490 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000861490 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000861490 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861490 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861490 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861490 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000861490 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review
000861490 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861490 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000861490 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861490 920__ $$lyes
000861490 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000861490 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x1
000861490 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x2
000861490 980__ $$ajournal
000861490 980__ $$aVDB
000861490 980__ $$aUNRESTRICTED
000861490 980__ $$aI:(DE-Juel1)INM-4-20090406
000861490 980__ $$aI:(DE-82)080010_20140620
000861490 980__ $$aI:(DE-Juel1)INM-11-20170113
000861490 9801_ $$aFullTexts