000861492 001__ 861492
000861492 005__ 20210130000829.0
000861492 0247_ $$2doi$$a10.1109/TBCAS.2018.2871498
000861492 0247_ $$2ISSN$$a1932-4545
000861492 0247_ $$2ISSN$$a1940-9990
000861492 0247_ $$2pmid$$apmid:30235148
000861492 0247_ $$2WOS$$aWOS:000455190000026
000861492 0247_ $$2altmetric$$aaltmetric:58153320
000861492 037__ $$aFZJ-2019-01953
000861492 082__ $$a620
000861492 1001_ $$0P:(DE-Juel1)169784$$aKo, Yunkyoung$$b0$$eCorresponding author$$ufzj
000861492 245__ $$aSignal Loss Compensation of RF Crossbar Switch Matrix System in Ultra-High Field MRI
000861492 260__ $$aNew York, NY$$bIEEE$$c2018
000861492 3367_ $$2DRIVER$$aarticle
000861492 3367_ $$2DataCite$$aOutput Types/Journal article
000861492 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1553883192_23697
000861492 3367_ $$2BibTeX$$aARTICLE
000861492 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000861492 3367_ $$00$$2EndNote$$aJournal Article
000861492 520__ $$aWith the increased commercial availability of high channel count MR coil arrays and the associated higher number of plugs in the patient bed, it has become a common practice to include switch matrices in the receive path of MR systems. These allow the arbitrary routing of a signal from any plug to any receiver in the console. While switch matrices are standard in systems at clinical field strength and have been developed for systems operating up to 4T, they have not yet been implemented at ultra-high field (UHF). Here, we present a switch matrix suitable for operation at UHF. Crossbar switches, which are the most frequently employed forms of a switch matrix, use RF switches to connect horizontal input lines with the desired vertical output line. This leaves transmission line stubs of variable length physically connected with the selected signal path, potentially resulting in elevated signal losses. While this can be tolerated at low frequencies, and only needs partial compensation at intermediate frequencies (4T), a full compensation is required at UHF. In this study, an RF crossbar switch, which uses switchable compensation elements in both horizontal and vertical transmission lines, was implemented for a 9.4T MRI scanner. The prototype developed was evaluated for single channel and multichannel receive performance and benchmarked against a fixed wire connection.
000861492 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000861492 588__ $$aDataset connected to CrossRef
000861492 7001_ $$0P:(DE-Juel1)164356$$aChoi, Chang-Hoon$$b1
000861492 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b2$$ufzj
000861492 7001_ $$0P:(DE-Juel1)131761$$aFelder, Jorg$$b3
000861492 773__ $$0PERI:(DE-600)2260089-9$$a10.1109/TBCAS.2018.2871498$$gVol. 12, no. 6, p. 1458 - 1466$$n6$$p1458 - 1466$$tIEEE transactions on biomedical circuits and systems$$v12$$x1940-9990$$y2018
000861492 8564_ $$uhttps://juser.fz-juelich.de/record/861492/files/08469089.pdf$$yRestricted
000861492 8564_ $$uhttps://juser.fz-juelich.de/record/861492/files/08469089.pdf?subformat=pdfa$$xpdfa$$yRestricted
000861492 909CO $$ooai:juser.fz-juelich.de:861492$$pVDB
000861492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169784$$aForschungszentrum Jülich$$b0$$kFZJ
000861492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164356$$aForschungszentrum Jülich$$b1$$kFZJ
000861492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b2$$kFZJ
000861492 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131761$$aForschungszentrum Jülich$$b3$$kFZJ
000861492 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000861492 9141_ $$y2019
000861492 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000861492 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T BIOMED CIRC S : 2017
000861492 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000861492 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000861492 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000861492 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000861492 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000861492 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000861492 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000861492 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000861492 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000861492 980__ $$ajournal
000861492 980__ $$aVDB
000861492 980__ $$aI:(DE-Juel1)INM-4-20090406
000861492 980__ $$aI:(DE-Juel1)INM-11-20170113
000861492 980__ $$aI:(DE-82)080010_20140620
000861492 980__ $$aUNRESTRICTED