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Abstract

We present a lattice calculation on the cross-correlations of conserved charges (baryon number, electric charge and

strangeness) near the transition temperature. We extrapolate to small baryo-chemical potentials, and thus we cover

typical STAR energies. We confront our finding to the latest STAR date set on cross-correlations. In this work we

present continuum lattice results with resolution up to Nt = 16.
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1. Introduction

Correlations of conserved charges are important observables for the finite-density investigations. In

this work we focus on the off-diagonal combinations. One possible way to extend lattice results to finite

density is to perform Taylor expansions of the thermodynamic observables around chemical potential µB = 0

[1, 2, 3, 4, 5]: fluctuations of conserved charges are directly related to the Taylor expansion coefficients of

such observables. They allow for a comparison between theoretical and experimental results to extract

the chemical freeze-out temperature T f and chemical potential µB f as functions of the collision energy

[6, 7, 8, 9]. The higher order fluctuations are also an important signature for the critical endpoint, as they

give access to the correlation length [3, 10, 11].

In this work we use analytical continuation from imaginary chemical potential [12, 13, 14, 15, 16]. It

agrees well with the results of the Taylor expansion as shown for the transition temperature [17].

We simulate the lower-order fluctuations at imaginary chemical potential and extract the higher order

fluctuations as derivatives of the lower order ones at µB = 0. This method has been successfully used in the

past and proved to lead to a more precise determination of the higher order fluctuations, compared to their

direct calculation [18, 19, 17].
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Fig. 1. Results for χBS
11

, χBS
31

, χBS
51

and an estimate for χBS
71

on a Nt = 12 lattice as functions of the temperature, obtained from the

single-temperature analysis. We plot χBS
71

in green to point out that its determination is guided by a prior, which is linked to χBS
31

. The

red curve in each panel corresponds to the Hadron Resonance Gas (HRG) model result. [20]

2. Cross-correlations on an Nt = 12-lattice

We first present an analysis with high precision on an Nt = 12 lattice. A more detailed description as

well as precise information on the lattice set-up can be found in ref. [20, 21]. In the following we use the

notation χ
B,Q,S

i, j,k
=

∂i+ j+k(p/T 4)

(∂µ̂B)i(∂µ̂Q) j(∂µ̂S )k , with µ̂ = µ/T . We make the ansatz
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where
χBS

31

χBS
71

and
χBS

31

χBS
91

are constrained by a prior, normally distributed with µ = −1.25 and σ = 2.75 and the

independent fit parameters are χBS
11

, χBS
31

and χBS
51

. The results which we obtain from a fully correlated fit to

this ansatz and its first three derivatives χBS
11

(µ̂B), χBS
21

(µ̂B) and χBS
31

(µ̂B) are presented in fig. 1. To connect

to experimental results, we calculate the ratio of the cumulants of the net-baryon number distribution as

functions of temperature and chemical potential by means of their Taylor expansion in powers of µB/T .

This is possible by combining different diagonal and non-diagonal fluctuations to obtain a result at the

strangeness neutral point and with 〈nQ〉 = 0.4〈nB〉. Our results for S Bσ
3
B
/MB and κB/σ

2
B

are shown in fig. 2.

Here MB is the mean, σ2
B

is the variance, S B is the skewness and κB the kurtosis of the the baryon number

distribution.

3. Cross-correlations in the continuum

Now we will present our preliminary results on the cross-correlations in the continuum. The curves

shown in fig. 3 are not final, as they do not yet include a full analysis of the systematic error. To extrapolate

to the continuum we need to incorporate the temperature and the 1/N2
t dependence of our data in this fit

ansatz. We expect our results for χ(T ) to lie on a smooth curve. We implement this information by fitting

the results with a spline in the temperature direction. For the 1/N2
t we fit a linear function through the data

from lattices with the sizes 323 ×10, 403 ×10, 403 ×12, 483 ×12, 483 ×16 and 643 ×16. Our whole analysis

is done in one combined fit. Therefore now the fit parameter in ansatz similar to eq. (1) become functions

of T and Nt.
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Fig. 2. S Bσ
3
B
/MB (left panel) and κBσ

2
B

(right panel) extrapolated to finite chemical potential. The left panel is extrapolated up to

O(µ̂2
B

). In the right panel, the darker bands correspond to the extrapolation up to O(µ̂2
B

), whereas the lighter bands also include the

O(µ̂4
B

) term. [20]

Fig. 3. Preliminary results for the cross-correlations in the continuum. The NNLO contribution is plotted in green, as it is again

constrained by a prior. The red curves correspond to the HRG model results.
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