
Performance of ODROID-MC1 for Scientific Flow Problems

Andreas Lintermanna,b,∗, Dirk Pleiterc, Wolfgang Schrödera,b

aInstitute of Aerodynamics and Chair of Fluids Mechanics, RWTH Aachen University, Wüllnerstr. 5a, 52062
Aachen, Germany

bJülich Aachen Research Alliance, High Performance Computing (JARA-HPC), RWTH Aachen University, Seffenter
Weg 23, 52074 Aachen, Germany

cJülich Supercomputing Centre, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425 Jülich, Germany

Received 18 September 2018, Revised 21 November 2018, Accepted 27 December 2018, Available online 4 January 2019.

https://doi.org/10.1016/j.future.2018.12.059

Abstract

In late 2017, Hardkernel released the ODROID-MC1 cluster system, which is based on the ODROID-
XU4 single-board computer. The cluster consists of four nodes, each equipped with a Samsung Exynos
5 Octa (5422) CPU. The system promises high computational power under low energy consumption.
In this paper, the applicability of such a systems to scientific problems is investigated. Therefore,
flow computations using a lattice-Boltzmann method are employed to evaluate the single core, single
node, and multi-node performance and scalability of the cluster. The lattice-Boltzmann code is part
of a larger simulation framework and scales well across several high-performance computers. Per-
formance measurement results are juxtaposed to those obtained on high-performance computers and
show that the ODROID-MC1 can indeed compete with high-class server CPUs. Energy measurements
corroborate the ODROID’s energy efficiency. Its drawbacks result from the limited amount of avail-
able memory, the corresponding memory bandwidth, and the low-performing Cortex A7 cores of the
big.LITTLE architecture. The applicability to scientific applications is shown by a three-dimensional
simulation of the flow in a slot burner configuration.

Keywords: Single-board computer, Odroid, Lattice-Boltzmann method, High-performance computing,

Performance analysis, Power consumption

1. Introduction

Single-board computers (SBCs) have become popular in the maker community. Especially their low
price to compute power ratio and their low power consumption make them attractive for, e.g., home
automation, gaming, or media server applications. A wide range of SBCs is available on the market.
Depending on the targeted application and the end user’s flavor, SBCs are shipped with a variety of
CPUs, GPUs, memory, and interfacing devices such as USB, ethernet, WiFi, and HDMI adapters, or
GPIO pins for measuring and controlling. Most SBCs have in common that they are equipped with
low-power ARM-based CPUs. Recent CPUs can be subdivided into 32- and 64-bit systems. ARMv7

∗Corresponding author. Tel.: +49 241 80 90419 / fax: +49 241 80 92257.
Email address: A.Lintermann@aia.rwth-aachen.de (Andreas Lintermann)

Preprint submitted to Future Generation Computer Systems January 5, 2019

https://doi.org/10.1016/j.future.2018.12.059

A7 Quad (1.4GHz, Socket 1) A15 Quad (2.0GHz, Socket 2)

Samsung Exynos 5 Octa (5422) Cortex-A15 / Cortex-A7 Octa core (ARM big.LITTLE)

CPU 0 CPU 1

CPU 2 CPU 3

CPU 4 CPU 5

CPU 6 CPU 7

SCU

512KB L2-Cache

SCU and ACP

2MB L2-Cache with ECC

2
G
B

L
P
D
D
R
3
R
A
M

G
P
U

G
b
it
eth

ern
et

eM
M
C

/
m
icro

S
D

(a) The ODROID-XU4 consists of 2 sockets equipped with four-core ARM Cortex-A7 and ARM Cortex-A15 CPUs.

L1

icache

L1

dcache

CPU 0 . . . CPU 3

SCU
interrup

controller

L2 cache

controller

(b) Sketch of the ARM Cortex-A7 CPU.

L1

icache

L1

dcache
TLBs

CPU 4 . . . CPU 7

L2

dcache

snoop

tag RAMsl
a
ve

sn
o
o
p

m
a
st
er

ACEACP

(c) Sketch of the ARM Cortex-A15 CPU.

Figure 1: Sketch of the hardware layout of the ODROID-XU4.

CPUs [1] are 32-bit systems and are frequently found on SBCs in their ARM-Cortex-A implementa-
tion such as Cortex-A{5, 7, 8, 9, 15, 17} system on a chip (SoC). In contrast, ARMv8 CPUs [2] such
as ARM-Cortex-A{53, 57, 73, 75} support 64-bit. The amount of memory, which is either of DDR2,
DDR3, or LPDDR3 type, is usually small, i.e., in the 512MByte to 4GByte range. It is often the
amount of memory, which determines the price of the whole system. SBCs with larger memory usually
base on x86 architectures. On-board GPUs stem from ARM, e.g., Mali-T628, Mali-400, Mali-450MP,
Mali-450MP2, or Mali-450MP4 are often found. Ethernet adapters usually feature 10/100Mbit or
GBit ethernet and storage is either wired on-board or can be attached via eMMC modules, SD, or mi-
croSD cards. The availability of different operating systems such as Linux (Debian, Android, Ubuntu,
Raspbian, and so forth) or Microsoft Windows makes SBCs easy to configure, program, and use.

2

The most prominent SBCs are probably the Raspberry Pi-{1, 2, 3} [3], its variants Orange Pi, Banana
Pi, and the Cubiboards [4], to name just a few. The evolution of these SBCs bases on changes of the
SoC and the CPU, which includes an increase of the CPU clocking, the number of available cores, and
the amount of available memory. In 2015, Hardkernel released the ODROID-XU4 system [5], which
is equipped with Samsung Exynos 5 Octa (5422) Cortex-A15 [6] 2GHz and Cortex-A7 [7] 1.4GHz
Octa core CPUs, i.e., it is powered by the ARM big.LITTLE technology with two sockets and features
heterogeneous multi-processing (HMP). Both CPUs feature a snoop control unit (SCU) for memory
access. The A15 additionally features an accelerator coherency port (ACP), translation look-aside
buffers (TLBs), and AXI coherency extensions (ACE). The GPU of the ODROID-XU4 is a Mali-T628
MP6, which supports OpenGL ES 3.1/2.0/1.1 and OpenCL 1.2 full profile. The SBC has 2GByte
LPDDR3 RAM PoP stacked and a eMMC5.0 HS400 flash storage socket, two USB 3.0 ports, a USB
2.0 port, a GBit ethernet adapter, and an HDMI 1.4a display port. It is powered by 5V/4A input.
A sketch of the hardware architecture is shown in Fig. 1a. Figures 1b and 1c show the layout of
the Cortex-A7 and Cortex-A15. Hardkernel claims to have created a SBC, which outruns the latest
Raspberry Pi 3 model by CPU/RAM performance. Recently, Hardkernel released the stackable cluster
solution ODROID-MC1, which consists of four slimmed ODROID-XU4, actively cooled by a single fan.
To evaluate the ODROID-MC1 for scientific flow problems, a hybrid MPI/OpenMP simulation frame-
work based on a lattice-Boltzmann method (LBM) is employed. The LBM is natively used for large-
scale multi-physics engineering applications on high-performance computer (HPC) systems, e.g., for
the simulation of the flow in the human respiratory system [8–15]. It is an explicit method operating
on unstructured data which is a representative of a whole class of simulation codes, e.g., for all un-
structured (flow) simulation codes that are rather memory-bound than compute-bound. Note that the
majority of HPC flow simulation codes have, due to these limitations peak performances, which are in
the range of 1-5% of the actual peak performance of a CPU. It is of high interest to understand the
capabilities and limitations of SBC systems such as the ODROID-MC1 with respect to hardware and
compute performance, scalability, memory limitations, network performance, energy consumption, and
price. The present manuscript investigates these aspects and comparatively juxtaposes the results to
state-of-the-art HPC systems installed at German HPC centers.
In the following, the numerical methods are presented in Sec. 2. Subsequently, Sec. 3 discusses the em-
ployed hardware and software stack, before performance and power consumption results are presented
in Sec. 4 Finally, the results are summarized and a conclusion is drawn in Sec. 5, and an outlook is
given in Sec. 6.

2. Numerical methods

Since the LBM is employed to evaluate the performance of the ODROID-MC1, a brief introduction
into the grid generation and the LBM is given in the following Secs. 2.1 and 2.2.

2.1. Grid generation

Computational meshes are generated by a massively parallel grid generator [16], which is suited for
the construction of large-scale hierarchical Cartesian octree-meshes on O(105) computational cores.
The mesh generation is subdivided into a serial and parallel stage. In the serial stage, first each
participating process reads the geometry from disk and stores the triangles for fast cell/triangle overlap-
and inside/outside-detections in an alternating digital tree (ADT) [17]. Subsequently, an initial cube
surrounding the geometry is continuously refined. The refinement constitutes an octree, from which
cells outside the geometry are removed at every refinement level. The mesh is refined towards an initial

3

base level lα and levels l < lα are deleted. A Hilbert curve [18] is placed across the remaining cells and
used to decompose the mesh for further parallel refinement. In the parallel stage, each process continues
to subdivide the remaining cells it is responsible for towards a coarse uniformly refined computational
mesh on level lβ > lα. Then, boundary refinement is introduced using cross-process, distance-based,
and recursive propagation algorithms. This leads to meshes on level lγ > lβ in which cells continuously
become finer in the vicinity of walls. The refinement is constrained by a maximum cell-level distance
of 1 that is allowed between neighboring cells in the mesh. Boundary-refined meshes enable to highly
resolve free and boundary-attached shear layers and hence improve the overall accuracy of simulations
featuring high-gradient regions and of wall-shear stress computations. To avoid load-imbalance during
meshing a dynamic load-balancing algorithm is capable of efficiently redistributing the work load. In
principle, the cells on level lα are finally employed for the mesh decomposition in the simulation. The
mesh is written to disk using the either the parallel methods from HDF5 [19] or Parallel NetCDF [20].
For more details, the interested reader is referred to [16].

2.2. Lattice-Boltzmann method

The simulations employ an LBM, which is part of a larger simulation framework. The LBM has
proven to be an efficient method for the computation of low-Mach and low- to moderate-Reynolds

number flows in complex geometries [8–15]. Easy second-order accurate boundary condition imple-
mentations and its straightforward parallelizability excels this method for the computation of complex
flows in intricate geometries on HPC systems. The code is hybrid MPI and OpenMP parallelized,
makes use of the same I/O methods as the grid generator, and has been validated in [21, 22].
To solve for fluid flows, the Boltzmann equation with the right-hand side BhatnagarGrossKrook (BGK)
collision operator is discretized to yield the lattice-BGK equation

fi (x+ ξi∆t, t+∆t) = fi (x, t) + ω∆t · (feq
i (x, t)− fi (x, t)) , i = 0, . . . , 18 (1)

in D3Q19 discretization space [23]. Eq. 1 is solved for the particle probability distribution functions
fi (PPDFs) with x representing the spatial location, t the time, ∆t the time increment, and ξi is
the discrete particle velocity in direction i. The equation describes the relaxation toward the discrete
Maxwell equilibrium distribution function feq

i . The speed of relaxation is given by

ω∆t =
c2s∆t

ν + 1
2
c2s∆t

, (2)

with the speed of sound cs =
√

1/3 and the kinematic viscosity ν. The collision operator, which is the
right hand side of Eq. 1, describes in a statistical sense the collision process of particles in a finite fluid
volume, while the left hand side of this equation describes the transport mechanisms from one fluid
volume to neighboring fluid volumes. The conservative macroscopic variables are obtained from the
moments of the PPDFs. For algorithmic reasons the collision step is separated from the propagation
step. Mesh refinement is realized by the method of Dupuis and Chopard [24]. In this method, the
transfer of the conservative variables and the PPDFs across different hierarchy levels in the octree are
tri-linearly interpolated and converted by an adaption factor that depends on the time steps of the
involved mesh levels.
Solid walls employ the interpolated, second-order accurate no-slip boundary condition by Bouzidi
et al. [25]. Various von Neumann and Dirichlet boundary conditions are implemented for in- and
outflows [13].

4

ODROID-MC1 JURECA JUQUEEN HAZEL HEN

bandwidth [GByte/s] 14.9 68.0 42.6 68.0

Table 1: Memory bandwidth of CPUs of the systems investigated. The values for the ODROID-MC1 are taken from [26].
Note that both JURECA and HAZEL HEN are equipped with the same Intel Xeon E5-2680 v3 Haswell CPUs, hence
having the same memory bandwidth.

Linksys SRW2024 Gbit switch

Synology RS816

(NFS, DHCP)

XU4

(FE)

MC1

(Cluster)

LAG

LAG
RJ45 RJ45 RJ45

Figure 2: Hardware setup for performance measurements of the ODROID-MC1.

3. Hardware and software stack

In Sec. 4, performance measurements are performed on four systems, i.e., on an ODROID-MC1
cluster and on the JURECA [27] and JUQUEEN [28] supercomputers located at Jülich Supercomputing
Centre (JSC), Forschungszentrum Jülich, and the HAZEL HEN system located at High-Performance
Computing Center Stuttgart (HLRS). Therefore, the employed hardware and for the ODROID the
software stack will be presented in the following. Since memory bandwidth plays a crucial role in the
performance, Tab. 1 compares the according values for each system presented below.

3.1. ODROID-MC1

The cluster front end is an ODROID-XU4 equipped with a 16GByte eMMC 5.0 module. The
ODROID cluster is a single four-node ODROID-MC1 with headless slimmed ODROID-XU4 SBCs.
Each node is equipped with a MicroSDHC SDC8GByte card from Kingston. The ODROID SBCs
are powered by a Meanwell RD-125B power supply. Shared file systems are mounted via autofs/NFS
from a Synology RS816 server, which also functions as a DHCP server. All units are interconnected
via a Linksys SRW2024 24-port Gbit switch. Employed RJ45 cables are at least of CAT.6e type. On
the Synology server, the available two ethernet ports are bonded for link aggregation (LAG). On the
switch, two ports that connect to the file server are also configured as LAG ports. Fig. 2 gives an
overview of the hardware setup.
All ODROID SBCs have the latest Ubuntu release 16.04.4 with kernel 4.9.27-35 armv7l installed.
For code compilation the gnu compiler collection 7.2.0 (GCC) is used. Code parallelization employs
the mpich-3.2.1 library. Shared memory parallelization makes use of the GCC-shipped OpenMP 4.5
features. The LBM code uses PnetCDF 1.9.0 [20] for parallel I/O and FFTW 3.3.7 [29] for some
flow field initialization. To schedule jobs on the ODROID-MC1, slurm-17.11.5 with munge-0.5.13 for
authentication and pmix-2.1.0 is employed. For more information on the compilation options employed
for the libraries and for the simulation framework, and on the Slurm configuration, the interested reader
is referred to Appendix A, Appendix B, and Appendix E.

5

3.2. JURECA supercomputer

The JURECA supercomputer consists of 1,872 compute nodes, each equipped with a dual-socket
system consisting of two Intel Xeon E5-2680 v3 Haswell CPUs. The CPUs are clocked at 2.5GHz
and have 12 cores each. That is, the whole system consists of 44,928 cores. 1,605 compute nodes
are equipped with 128GByte , 128 with 256GByte, and 64 with 512GByte DDR4 memory clocked at
2, 133MHz. 75 of the compute nodes are furthermore equipped with two NVIDIA K80 GPUs each.
Additionally, the JURECA has a booster module with 1,640 compute nodes with one Intel Xeon Phi
7250-F Knights Landing CPUs (KNL) per node. Each KNL has 68 cores clocked at 1.4GHz and
is equipped with 96GByte memory plus 16GByte MCDRAM high-bandwidth memory. Altogether,
the booster module has 111,520 CPU cores. The overall CPU, GPU, and KNL peak performances of
JURECA are 1.8, 0.44, and 5 Petaflop. The JURECA uses also uses Slurm for job scheduling and a
Mellanox EDR InfiniBand high-speed network with non-blocking fat tree topology for communication.
JURECA is attached to a storage system with a bandwidth of about 150GByte/s. For code compilation
the gnu compiler suite 7.3.0 is used. Further details on the compile options are given in Appendix C.

3.3. JUQUEEN supercomputer

The JUQUEEN is an IBM BlueGene/Q system and consists of 28,672 nodes containing IBM
PowerPC A2 CPUs at 1.6GHz, 16 cores, and 16GByte of RAM per node. The overall peak performance
is 5.9PFlop/s. Due to its 4-way SMT hardware threaded floating point units it is capable of running a
maximum number of 4 OpenMP threads per core. The JUQUEEN system uses the IBM LoadLeveler
as job scheduler and has a 5D Torus network with a bandwidth of 2GByte/s per link and direction.
On JUQUEEN the Clang compiler 6.0 is used with the options given in Appendix D.

3.4. HAZEL HEN supercomputer

The CRAY HAZEL HEN system consists of 7,712 dual socket nodes containing each two Intel
Xeon E5-2680 v3 Haswell CPUs, each with 12 cores clocked at 2.5GHz. The system has a peak
performance of 7.4PFlop/s for 185,088 cores. The nodes contain 128GByte of RAM. Parallel I/O is
implemented via a Lustre File System (LFS), see [30]. Further details on the compile options are given
in Appendix C.

4. Results

The performance of the ODROID-MC1 is in the following analyzed from a memory (Sec. 4.1),
compute performance (Sec. 4.2), and power consumption (Sec. 4.3) point of view using the grid gen-
erator and LBM as introduced in Sec. 2 and the hardware setup outlined in Sec. 3. While for the
measurements a canonical simulation case is employed, Sec. 4.4 presents some results for a realistic
simulation. The performance findings are juxtaposed to results obtained on the JURECA and HAZEL
HEN supercomputers. For the performance analyses, mainly strong scalability [31, 32] results and
mega lattice site updates per second MLUPs [33] are considered.

4.1. Memory consumption

First, the memory consumption for the grid generation described in Sec. 2.1 is investigated. There-
fore, the massively parallel grid generator is started using 1, . . . , 4 nodes with a single MPI rank per
node. The number of cells is continuously increased until the upper memory limit is reached. Tab. 2
shows the amount of cells that can be generated on the ODROID-MC1. Having 2GByte LPDDR3

6

1 rank 2 ranks 3 ranks 4 ranks

no. cells (grid) [106] 9.5 19.0 28.5 38.0

no. cells (sim) [106] 2.3 4.6 6.9 9.2

LPDDR3 [GByte] 2.0 4.0 6.0 8.0

Table 2: Memory consumption for grid generation (grid) and LBM simulation (sim). Furthermore, the total amount of
available memory using an increasing number of nodes is shown.

RAM available per node, the total amount of cells for a single node is approximately 9.5 · 106, which
amounts to roughly 38 · 106 cells using all four nodes of the ODROID-MC1. Considering the memory
footprint of a simulation, it is obvious that a simulation run requires way more memory than a grid
generation. The present simulation framework under application of the D3Q19 discretization model of
the LBM allows to have a maximum number of cells of 2.3 · 106 per node, leading to a total problem
size of 9.2 · 106 that can be simulated on the cluster (see Tab. 2). It should be noted that the memory
footprint of the LBM is due to the 32-bit nature of the SBC smaller than on 64-bit systems.

4.2. Compute performance

To evaluate the performance of the ODROID-MC1, different run time measurements are performed
with MPI Wtime() functions. First, the single node performance is investigated in Sec. 4.2.1. Subse-
quently, Sec. 4.2.2 discusses the inter-node performance of the ODROID-MC1, before in Sec. 4.2.3
the performance is analyzed for the complete system and a comparison to the performance on HPC
systems is performed in Sec. 4.2.4. For all simulation cases, a cubic domain with periodic boundaries
in all Cartesian directions serves as a benchmark case. Three mesh sizes are considered. The first
mesh consist of C1 = 2.05 · 106 cells and has levels lα = 6 and lβ = 7. The second mesh consist of
C2 = 8.89 · 106 cells and has levels lα = 6 and lβ = 8. The third mesh consist of C3 = 1.225 · 109 cells
and has levels lα = 8 and lβ = 10. The total run time tt, excluding the pre-processing and I/O, is
subdivided into the time for the collision step tc, the time for the propagation step tp, compiling the
communication buffer and distributing incoming data to the cells tb, and the communication time tm.
Simulations employ the D3Q19 discretization scheme and are run for 100 LBM iterations.

4.2.1. Single node performance

First, the performance on a single node is tested using either the fast or the slow socket of the
SBC, i.e., either the big or the LITTLE part of the ARM big.LITTLE technology is used. For
each of the sockets, pure MPI (M) and pure OpenMP (O) measurements are performed, i.e., for
the fast and slow sockets S+ and S− the MPI/OpenMP tuples are r±M ∈ {(1, 1), (2, 1), (4, 1)}. Note
that the first entry of these tuples corresponds to the total number of MPI ranks, while the second
entry represents the number of OpenMP threads per MPI rank. For the OpenMP measurements
it is r±O ∈ {(1, 1), (1, 2), (1, 4)} and for scheduling1 OMP SCHEDULE=static is used. Note that tests
using guided instead of static is not faster for these cases. For job submission, slurm is employed
and jobs are pinned to S± with the batch command srun and the CPU-binding masks Y + =0xf0
and Y − =0x0f (for a sample job script, the interested reader is referred to Appendix E). Table 3

1OpenMP Loop Scheduling https://software.intel.com/en-us/articles/openmp-loop-scheduling

7

https://software.intel.com/en-us/articles/openmp-loop-scheduling

10

100

500

1 2 4

ab
so

lu
te

 ti
m

e
t t

number of cores

ideal
MPI fast socket

OpenMP fast socket
MPI slow socket

OpenMP slow socket

(a) Strong scalability of the pure MPI and OpenMP runs
on each the fast and the slow socket. The number of cores
is shown over the absolute complete run time.

10

100

290

1 2 4

ab
so

lu
te

 ti
m

e

number of cores

ideal
tc fast socket
tp fast socket

tc slow socket
tp slow socket

(b) Detailed strong scaling plots for the collision (time tc)
and propagation (time tp) steps of the OpenMP LBM cases
in Fig. 3a.

Figure 3: Strong scalability of the LBM using pure MPI and pure OpenMP executions on a single ODROID-MC1 node
using either the fast or the slow socket. The LBM is run for 100 iterations.

socket type r±{M,O} tt [s] tc [s] tp [s] tm [s] tb [s] speedup par. eff. [%]

S+ M (1, 1) 106.29 59.39 46.13 0.04 0.73 1.00 100.00

(2, 1) 73.32 36.66 35.15 0.35 1.17 1.45 72.48

(4, 1) 65.54 27.66 34.90 1.35 1.64 1.62 40.54

O (1, 1) 106.29 59.39 46.13 0.04 0.73 1.00 100.00

(1, 2) 71.56 36.39 34.37 0.04 0.75 1.49 74.26

(1, 4) 60.36 26.39 33.17 0.04 0.75 1.76 44.03

S− M (1, 1) 466.80 280.18 184.72 0.23 1.68 1.00 100.00

(2, 1) 247.43 143.47 100.89 0.82 2.24 1.89 94.33

(4, 1) 135.70 74.71 58.16 0.83 2.00 3.44 86.00

O (1, 1) 466.80 280.18 184.72 0.23 1.68 1.00 100.00

(1, 2) 243.46 142.31 99.24 0.22 1.69 1.92 95.87

(1, 4) 130.60 72.15 56.47 0.30 1.68 3.57 89.36

Table 3: Absolute run times of 100 iteration of the LBM on a single node on either the fast socket S+ or the slow socket
S−. The absolute run time tt is subdivided into the time for the collision step tc, the time for the propagation step tp,
compiling the communication buffer and distributing incoming data to the cells tb, and the communication time tm.

and Fig. 3a show the result of the strong scaling tests. Obviously, both the pure MPI and the pure
OpenMP execution scale well across the slow socket, i.e., their parallel efficiency, which is defined by

8

the ratio of the expected scaling value under optimal scaling conditions and the achieved scaling value
in percent, is at 86.0% and 89.36% on 4 cores. In contrast, the scalability on the fast socket is not
optimal. The OpenMP case scales with 44.03% parallel efficiency on 4 cores slightly better than the
MPI case with 40.54%. The timings tc and tp of the collision and propagation are responsible for this
behavior. Fig. 3b exemplarily shows these timings for the OpenMP runs on both sockets. While the
parallel efficiency of the collision computation slightly increases from 2 to 4 cores, the propagation is on
4 cores almost as expensive as on 2 cores. Since the LBM is operating on an unstructured grid, memory
access, especially in the propagation step, becomes quasi-random. In more detail, in the propagation
step local PPDFs are accessed in a succeeding manner, need, however, to be distributed to quasi-
random locations in memory. It is suspected that this leads to page faults, which requires to reload
data from memory more frequently. The memory channels, which are at 14.9GByte/s [26], are hence
overloaded, rendering the propagation step bandwidth-bound. Note that a detailed study via a roof-
line model [34] is not possible due to missing tools on ODROID-MC1. The results, however, underline
that the LBM resides on the memory-bound side of the roof-line graph, which is a typical behavior
for codes with unstructured memory access patterns. On the slow socket the collision operation scales
perfectly. Again the propagation is responsible for the drop of the total parallel efficiency. However,
since the slow socket is roughly 4.4 times slower than the fast socket on 1 core and 2.1 times slower on
4 cores, expensive memory operations are hidden behind expensive computational operations. Looking
at Tab. 3, the impact of the buffer and communication times tb and tm are negligible. For OpenMP
runs tb and tm stay almost constant for varying numbers of OpenMP threads. Furthermore, the buffer
time tb slightly increases from 1 to 2 ranks and slightly decreases again from 2 to 4 ranks. Note that
periodicity is realized via MPI communication and, hence, it is tm > 0 for all tuples r{M,O}, i.e., even
for all single rank cases the buffer is filled and information is exchanged with the same rank via MPI.

4.2.2. Inter-node performance

Next, the inter-node performance is investigated using either only S+ or S−. Therefore, configura-
tion triplets (nodes / MPI ranks per node / OpenMP threads per MPI rank) h±

{M,O} ∈ {(1, 4, 1), . . . ,

(4, 4, 1), (1, 1, 4), . . . , (4, 1, 4)} are tested. Figure 4 and Tab. 4 show the results of the experiments.
From Fig. 4a it is obvious that the OpenMP scalability across the whole ODROID-MC1 using S+ and
S− is with parallel efficiencies of 85.63% and 88.36% good. Also the pure MPI run on S− scales well
across the system. Looking, however, at Fig. 4b, a linear increase in communication time is visible for
the MPI version on S−, which is only hidden by the slow computation and compensated by the almost
perfect bisection of the times tc and tp under increasing node numbers. That is, it is expected that
for larger node numbers the scaling becomes worse. Among all scaling plots of Fig. 4a, the MPI runs
on the S+ scale worst. This can be explained by the strong increase of communication time from 8 to
16 cores shown in Fig. 4b. Unlike on S−, the fast computation, which also shows an almost perfect
bisection of tc and tp, cannot compensate this effect in the complete scaling graph. Considering the
OpenMP runs the communication times experience a jump from 1 node to 2 nodes, which is due to
the additional inter-node communication overhead and the already small initial communication times
on a single node (also compare Tab. 3). Interesting is the change in tm from 2 to 4 nodes. While tm
on S− stays almost constant, tm on S+ slightly increases.

4.2.3. Performance of the complete cluster

To evaluate the performance of the whole cluster, scaling tests are performed on all four nodes of the
ODROID-MC1 using all cores of the nodes. Therefore, different parallelization strategies are employed.
First, the configuration triplets ~±{M,O} ∈ {(1, 2, 4), . . . , (4, 2, 4), (1, 1, 8), . . . , (4, 1, 8)} are used. For the

9

10

100

140

4 8 16

ab
so

lu
te

 ti
m

e
t t

number of cores

ideal
MPI fast sockets

OpenMP fast sockets
MPI slow sockets

OpenMP slow sockets

(a) Strong scalability of the pure MPI and OpenMP runs
across the whole cluster using either the fast or the slow
socket. The number of cores is shown over the absolute
complete run time.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

4 8 16

co
m

m
. t

im
e

t m

number of cores

MPI fast socket
OpenMP fast socket

MPI slow socket
OpenMP slow socket

(b) Communication time tm of the runs shown in Fig. 4a.

Figure 4: Strong scalability of the LBM using pure MPI and pure OpenMP executions across the ODROID-MC1 using
either the fast or the slow socket. The LBM is run for 100 iterations.

triplets with 8 OpenMP threads per node the time difference between the different OpenMP scheduling
options OMP SCHEDULE={static, guided, dynamic} is measured (types M/Ost,gu,dy in Tab. 5). Fig-
ure 5a and Tab. 5 show the results of the measurements. Configuration ~

±
{M,O} = (x, 2, 4), x ∈ {1, 2, 4}

suffers from the distribution of equally sized chunks of cells on S+ and S−, i.e, although non-blocking
communication is used, sockets S+ need to wait for sockets S− to finish their work. Considering the
absolute total run times this case is in its execution even slower than the cases h±

{M,O} = (x, 1, 4).

Instead of using 2 MPI ranks with 4 OpenMP threads on each node, starting 8 OpenMP threads per
node slightly enhances the performance. Among the parallelization types M/Ost,gu,dy, the guided

scheduling outperforms the static and dynamic scheduling, reaches, however, not the performance
of the so far best computing configuration h±

{M,O} = (x, 1, 4). The static case distributes the loop

iterations of the collision and propagation equally on the available cores and hence their run times
are dictated by S−. In contrast, dynamic scheduling allows to use the internal work queue to give a
chunk-sized block of loop iterations to each thread, the corresponding costly overhead, however, ren-
ders this method the most expensive. Using guided the chunk-size per thread continuously decreases
and allows for better load-balancing. In Fig. 5b, the run times of the individual parts of the LBM are
shown for case h±

M/Ogu = (x, 1, 8). While the communication time tm increases slightly and the time

for setting up the buffer tb stays almost constant, the collision and propagation times tc and tp are
almost bisected for each doubling of the number of cores (see also Tab. 5).
In addition to using a static decomposition of the computational domain on the fast and slow cores,
simulations are run with performance-weighted distributions of the number of cells on the fast and
slow cores with configuration ~

±
{M,O} = (4, 2, 4) with OMP SCHEDULE=guided, i.e., a distribution D of

10

15

50

110

8 16 32

ab
so

lu
te

 ti
m

e
t t

number of cores

ideal
MPI/OpenMP

OpenMP static
OpenMP guided

OpenMP dynamic

(a) Strong scalability of mixed MPI/OpenMP runs with
different OpenMP scheduling across the whole cluster using
both the fast and the slow sockets. The number of cores is
shown over the absolute complete run time.

 0

 5

 10

 15

 20

 25

 30

 35

8 16

ab
so

lu
te

 ti
m

e

number of cores

tc
tp
tm
tb

(b) Run times of the individual parts of the LBM for the
OpenMP guided case shown in Fig. 5a.

Figure 5: Strong scalability of the LBM using mixed MPI/OpenMP executions across the whole ODROID-MC1. The
LBM is run for 100 iterations.

the number of total cells C = C1 on Θ compute nodes of

D =















⌈

C
Θ
· 1
1+κ

⌉

, rank %2 = 0 (S−)

⌈

C
Θ
·
(

1− 1
1+κ

)

⌉

, rank %2 = 1 (S+)

(3)

is used. The performance factor κc,1 between the fast and slow cores is varied as κc,1 ∈ [1.0, 13.0] with
a coarse δκc,1 = 0.1 across the whole interval and a fine δκf,1 = 0.01 in the interval [2.0, 3.0]. The
corresponding results are shown in Fig. 6a. The optimum is reached at κmin,1 = 2.46, requiring only
tt,1 = 19.44s for the complete execution. As the times for the collision and propagation computation tc,1
and tp,1 continuously decrease, the communication time continuously increases after a slight drop for
small κc,1 < 1.4. The strong increase of tm,1 is also the reason for the increase of tt,1 for κc,1 > κmin,1.
Although the computation is faster than ~

±
{M,O} = (4, 2, 4) using static scheduling, it cannot compete

with h+
O = (4, 1, 4) (tmin,1 = 17.62s). That is, even a perfect performance-weighted distribution of the

computational work does not allow to increase the speed of the computation in this case. It has to
be noted, however, that execution times may vary. This is, e.g., visible when comparing the inset of
Fig. 6a with δκf,1 to the results of δκc,1. That is, the same execution times are not exactly matched
for the same values of κ.
To furthermore check if the execution for larger cases using the weighted approach is also slower than
the standard approach, the bigger mesh with C2 cells is employed and κc,2 and κf,2 are varied again
in the intervals [1.0, 13.0] and [2.0, 3.0]. The results for the measurements are shown in Fig. 6b and
show a similar behavior as for C1. That is, while the times tp,2 and tc,2 continuously decrease, the

11

socket type h±
{M,O} tt [s] tc [s] tp [s] tm [s] tb [s] speedup par. eff. [%]

S+ M (1, 4, 1) 65.54 27.66 34.90 1.35 1.64 1.0 100.00

(2, 4, 1) 34.37 13.79 17.85 1.69 1.04 1.91 95.35

(4, 4, 1) 21.48 7.57 9.40 3.77 0.74 3.05 76.27

O (1, 1, 4) 60.36 26.39 33.17 0.04 0.75 1.0 100.0

(2, 1, 4) 32.14 13.38 16.79 1.18 0.80 1.88 93.89

(4, 1, 4) 17.62 6.84 8.58 1.56 0.64 3.43 85.63

S− M (1, 4, 1) 135.70 74.71 58.16 0.83 2.00 1.0 100.00

(2, 4, 1) 70.82 38.02 29.36 2.08 1.36 1.92 95.80

(4, 4, 1) 40.00 19.97 15.36 3.65 1.01 3.39 84.83

O (1, 1, 4) 130.60 72.15 56.47 0.30 1.68 1.0 100.00

(2, 1, 4) 69.35 36.82 28.55 1.81 2.17 1.88 94.16

(4, 1, 4) 36.95 18.72 14.55 1.87 1.81 3.53 88.36

Table 4: Absolute run times of 100 iteration of the LBM on the full ODROID-MC1 using either the fast socket S+ or the
slow socket S−. The absolute run time tt is subdivided into the time for the collision step tc, the time for the propagation
step tp, compiling the communication buffer and distributing incoming data to the cells tb, and the communication time
tm.

socket type ~
±
{M,O} tt [s] tc [s] tp [s] tm [s] tb [s] speedup par. eff. [%]

S± M/Ost (1, 2, 4) 77.58 37.17 37.47 0.53 2.41 1.0 100.00

(2, 2, 4) 41.30 18.86 18.87 1.57 2.00 1.88 93.93

(4, 2, 4) 23.57 10.09 9.74 2.35 1.38 3.29 82.29

M/Ost (1, 1, 8) 72.09 38.27 32.76 0.09 0.97 1.0 100.0

(2, 1, 8) 39.02 19.45 16.33 1.64 1.59 1.85 92.39

(4, 1, 8) 21.52 9.98 8.44 1.93 1.16 3.35 83.73

M/Ogu (1, 1, 8) 60.70 33.57 26.34 0.04 0.74 1.0 100.0

(2, 1, 8) 34.06 17.87 13.39 2.00 0.80 1.78 89.11

(4, 1, 8) 18.39 8.69 6.88 2.18 0.64 3.30 82.52

M/Ody (1, 1, 8) 108.97 49.78 58.42 0.04 0.74 1.0 100.0

(2, 1, 8) 57.32 25.16 29.87 1.34 0.95 1.90 95.05

(4, 1, 8) 30.58 13.20 15.05 1.68 0.64 3.56 89.09

Table 5: Absolute run times of 100 iteration of the LBM on the full ODROID-MC1 using both the fast and slow sockets
S±. The absolute run time tt is subdivided into the time for the collision step tc, the time for the propagation step tp,
compiling the communication buffer and distributing incoming data to the cells tb, and the communication time tm.

12

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10 11 12 13

hO
+
=(4,1,4)

ab
so

lu
te

 ti
m

e
t t

speed factor κ

tt,1
tc,1
tp,1
tm,1
tb,1

 18

 20

 22

 2 2.2 2.4 2.6 2.8 3

 18

 20

 22

 2 2.2 2.4 2.6 2.8 3

(a) Time measurements for a mesh size of C1 = 2.05 · 106.

 0

 20

 40

 60

 80

 100

 120

 1 2 3 4 5 6 7 8 9 10 11 12 13

hO
+
=(4,1,4)

ab
so

lu
te

 ti
m

e
t t

speed factor κ

tt,2
tc,2
tp,2
tm,2
tb,2

 72

 76

 80

 2 2.2 2.4 2.6 2.8 3

 72

 76

 80

 2 2.2 2.4 2.6 2.8 3

(b) Time measurements for a mesh size of C2 = 8.89 · 106.

Figure 6: Change of the total tt and fractional times tc,{1,2}, tp,{1,2}, tm,{1,2}, and tb,,{1,2} using an increasing speed

factor κc,{1,2} between S± with δκc,{1,2} = 0.1 on the complete ODROID-MC1 for 100 LBM iterations of the D3Q19

algorithm. The red lines shows the minimum execution time obtained for h+

O
= (4, 1, 4) and the insets show results of a

second execution in the interval κc,{1,2} ∈ [2.0, 3.0] with δκf,{1,2} = 0.01.

time for tm,2 continuously increases, rendering again the runs with ~
±
{M,O} = (4, 2, 4) a slightly more

efficient approach. However, in contrast to C1, the complete time tmin,2 = 71.27s of ~±{M,O} = (4, 2, 4)

is almost matched at κmin,2 = 2.31 with tt,2 = 72.53s. Furthermore, it should be noted that the ratio
C2/C1 = 4.34 is smaller than the ratio tmin,2/tmin,1 = 4.05 proving a good weak scaling of the problem.

13

1

10

100

1 2 3 4 6 8 12 16 24 32 48

hO
+
=(4,1,4)

minJU=(4,8)

minHH=(4,12)

ab
so

lu
te

 ti
m

e
t t

number of cores

ideal
JU1
JU4
HH1
HH4

hO
+

(a) Strong scaling of 100 iteration of the LBM on a single
JURECA (JU) and HAZEL HEN (HH) node using the
mesh with C2 = 8.89 · 106 cells. Furthermore, the single
result at h+

O
= (4, 1, 4) for the ODROID-MC1 is displayed.

For the HPC systems the run times are shown for a single
MPI rank and for four MPI ranks (indices 1 and 4).

10

100

1,000

16 32 64 128
256

512
1,024

2,048
4,096

8,129
16,384

32,768

ab
so

lu
te

 ti
m

e
t t

number of nodes

ideal speedup
JUQUEEN

HAZEL HEN
JURECA

(b) Strong scalability of the LBM on the JURECA, HAZEL
HEN, and JUQUEEN systems using a large production run
mesh consisting of C3 = 1.225 · 109 cells.

Figure 7: Performance comparison of the ODROID-MC1 and the JURECA and HAZEL HEN supercomputers. Results
for a strong scalability analysis are shown for a large simulation case.

4.2.4. Comparison to the performance on an HPC system

The configuration h+
O = (4, 1, 4) shows the best scaling as well the best run time behavior on

the ODROID-MC1. Therefore, the corresponding result is comparatively juxtaposed to runs on the
JURECA and HAZEL HEN supercomputers for mesh C2. For the computations on the HPC systems
a single node is employed and strong scalability and run times are analyzed. Figure. 7a and Tab. 6
show the corresponding results in absolute run times. Note that due to the memory limitations of the
ODROID-MC1, the minimum number of nodes that can be employed for this mesh is four, which is why
only a single data point is shown for h+

O = (4, 1, 4) in Fig. 7a. Furthermore, Tab. 7 shows the parallel
performance given in MLUPs for selected configurations. On JURECA and HAZEL HEN two scaling
experiments are run, i.e., each with a single MPI rank per node and increasing numbers of OpenMP
threads and with four MPI ranks per node and increasing number of OpenMP threads. Latter runs
contain the best performing runs with the minimal run times. JU andHH denote the runs on JURECA
and HAZEL HEN, respectively, the indices 1 and 4 the number of MPI ranks. From the results it is
obvious that using a single MPI rank on both HPC systems brings not the best time to solution. Case
HH1 shows a superlinear scaling behavior for a small number of OpenMP threads and a good scaling is
obtained up to 8 cores. For a larger number of OpenMP threads the scalability becomes worse and the
run times for higher core counts stay almost constant. The single core performance for HH1 is with a
difference of 33.23 s to JU1 worse than on JU1, i.e., JURECA is 1.22 times faster. Similar to HH1, a
good scaling behavior is visible for JU1 up to 8 cores, crossing the NUMA domain from 12 to 16 cores
brings, however, a strong drop in performance. The fast runs JU4 andHH4 show a similar performance

14

MC-1 h+
O tt [s] JU1 tt [s] JU4 tt [s] HH1 tt [s] HH4 tt [s]

(4, 1, 4) 71.27 (1, 1) 154.09 (4, 1) 46.98 (1, 1) 187.32 (4, 1) 43.70

(1, 2) 82.31 (4, 2) 27.94 (1, 2) 81.20 (4, 2) 27.51

(1, 3) 59.35 (4, 3) 24.19 (1, 3) 57.68 (4, 3) 24.07

(1, 4) 46.67 (4, 4) 18.34 (1, 4) 45.13 (4, 4) 18.12

(1, 6) 33.12 (4, 6) 12.70 (1, 6) 32.57 (4, 6) 12.19

(1, 8) 27.32 (4, 8) 11.88 (1, 8) 27.02 (4, 8) 17.20

(1, 12) 23.70 (4, 12) 16.24 (1, 12) 23.61 (4, 12) 11.59

(1, 16) 21.52 (1, 16) 22.01

(1, 24) 16.12 (1, 24) 21.39

(1, 32) 15.66 (1, 32) 21.42

(1, 48) 17.02 (1, 48) 21.18

Table 6: Absolute run times of 100 iteration of the LBM on the ODROID-MC1 using only the fast cores and a single
JURECA (JU) and HAZEL HEN (HH) node. For the HPC systems the run times are shown for a single MPI rank (1, x)
and for four MPI ranks (4, x) (indices 1 and 4). Run times in red indicate the fastest computations on the individual
systems.

MC-1 h+
O MLUPs JU4 MLUPs HH4 MLUPs

(4, 1, 4) 12.47 (4, 4) 48.47 (4, 4) 49.06

(4, 8) 74.83 (4, 12) 76.70

Table 7: Mega lattice updates per second MLUPs of 100 iteration of the LBM on the ODROID-MC1 using only the
fast cores and a single JURECA (JU) and HAZEL HEN (HH) node for selected configurations.

behavior from (4, 1) to (4, 6) with the HAZEL HEN being slightly faster. While for HH4 a massive
increase of the run time is visible for 32 cores, i.e., for combination (4, 8), case JU4 continuous to scale
resulting in the lowest run time at minJU = (4, 8) with 74.83MLUPs. For case HH4 the overall best
performance among all run times is achieved at minHH = (4, 12) with 76.70MLUPs. Comparing now
the performance of the ODROID-MC1 to the results on the HPC systems, it is obvious that despite
only Gbit ethernet is used between the ODROID-MC1 nodes, the performance of the system is on the
same order as on the HPC systems. Considering furthermore the fastest run at h+

O = (4, 1, 4) with
12.47MLUPs, the runs at minHH = (4, 8) and minHH = (4, 12) are by a factor of 6.04 and 6.15
faster. This is, however, only true by considering the fastest computations. A comparison of the run
times using altogether 16 cores, i.e., h+

O = (4, 1, 4), JU4 = (4, 4), and HH4 = (4, 4) reveals that the
code is on the ODROID-MC1 only of 3.89 times (JURECA) and 3.93 times (HAZEL HEN) slower.
The ODROID-XU4 has a dual channel memory bandwidth of 14.9GByte/s [26], i.e., the memory
bandwidth for the ODROID-MC1 sums up to 56GByte/s. In contrast, the memory bandwidth on the
Intel Xeon E5-2680 v3 Haswell CPUs is at 68GByte/s. For the dual socket system this adds up to
136GByte/s, which is a factor of 2.43 faster as the on the ODROID-MC1.
It should be noted that the cases considered here are relatively small compared to real production
runs on HPC systems, which leads to the previously discussed scalability limits of the LBM, even on

15

 0

 10

 20

 30

 40

 50

 60

 0 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 110
 120

 130
 140

 150
 160

 170
 180

 190
 200

co
m

pu
ta

tio
n

LB
M

pr
ep

ro
ce

ss
in

g

gr
id

 s
et

up

ge
om

et
ry

 a
nd

gr
id

 I/
O

idle idle

W
a
tt
s

absolute time [s]

Watts

Figure 8: Power consumption of a single computation of h+

O
(4, 1, 4) on mesh C2 over time.

HPC systems. To show, however, that the LBM indeed scales across a large number of core counts,
Fig. 7b presents strong scaling results for mesh C3 with 1.1225 · 109 cells, which corresponds to an
average production run simulation. The experiments are run on the systems JURECA, HAZEL HEN,
and additionally on JUQUEEN. Unlike the previous scaling graphs, Fig. 7b shows the run times over
the node counts. Obviously, the LBM shows a very good strong scaling behavior on all three systems.
That is, on JURECA an almost linear behavior is visible up to 128 nodes. On HAZEL HEN the
code scales well up to 512 nodes and on the massively parallel system JUQUEEN a good scalability
up to 8, 192 nodes with a slight decrease in parallel efficiency up to 16, 384 nodes is visible. The
rather high absolute run times on JUQUEEN compared to the Intel-based systems are probably due
to serial memory accesses and larger cache line sizes on IBM BlueGene/Q. Furthermore, non-optimal
compilation could be a cause for the performance loss. That is, on JUQUEEN the IBM XL compiler
suite, which would produce highly-optimized machine specific code, cannot be used due to non-existing
C++11 features of the compilers. They are, however, required by the simulation code. Instead, the
Clang 6.0 compiler, which supports C++11, see Appendix D, is used.

4.3. Power consumption

The power consumption of the ODROID-MC1 is measured by running simulation h+
O = (4, 1, 4) on

mesh C2, cf. Sec. 4.2.4, and by taking the Watts with a Conrad Electronic Voltcraft Energy-Logger
4000, which is installed between the power outlet and the Meanwell RD-125B power supply, powering
the whole ODROID-MC1. This logger allows to log power consumption in the sub-Watt range over
time with an accuracy of 0.2W . It stores the corresponding data on SD-card with an interval of 1
minute. Since this accuracy is not sufficient, the data is read from the display of the Energy Logger
4000, which is updated each second. The power consumption of the idling ODROID cluster is measured
at emin = 23.1W . Fig. 8 shows the power consumption over time, i.e., starting from emin and having
an increased consumption over the course of the computation. For better understanding, the time line
includes a description of the different periods of the computation. It should be noted that changing

16

system power [W] energy/sim. [Wh] Wh/MLU [Wh] W factor energy factor

ODROID-MC1 54.5 1.079 1.214 · 10−3 1.00 1.00

JURECA 160 0.815 0.917 · 10−3 0.34 0.76

HAZEL HEN 160 0.805 0.906 · 10−3 0.34 0.75

JURECA 300 1.528 1.719 · 10−3 0.18 1.42

HAZEL HEN 300 1.510 1.700 · 10−3 0.18 1.40

Table 8: Comparison of the power consumptions between the different systems. For the ODROID-MC1 the power
consumption is measured. Two estimates are given for the power consumption of the Intel-based systems (160W and
300W). For each, the energy for the whole simulation, the energy requirement per MLU , and Watt factors as well as
energy factors are given. The Watt factors are given by the ratio of the Watts of the ODROID-MC1 simulation and
the HPC system simulation. The energy factors are obtained by the ratio of the energy results of the ODROID-MC1
and the compared HPC system.

the number of iterations does not change the initial steps of the simulations (geometry and grid I/O,
mesh setup, and LBM preprocessing) but only the computational part. The maximum consumption
emax = 54.5W is reached in the computation section, which is fully OpenMP parallelized and employs
all four cores. Using these values and considering the preprocessing time of a simulation small compared
to the computational part, the energy result is roughly at 1.079Wh for this simulation. Considering
furthermore the MLUPs from Tab. 7 the energy per mega lattice update MLU is at 1.214 · 10−3Wh.
Measuring the power consumption of HPC systems is complicated. HPC centers usually have no
hardware installed to detect the power consumption of single jobs, which is why the following analysis
is based on estimated values. The thermal design power (TDP) of the Intel Xeon E5-2680 v3 Haswell
CPU installed in JURECA and HAZEL HEN is at 120W TDP (Intel Specs). That is, by looking
solely at the TDP of two CPUs using only 8 cores, a rough estimate of 160 W and a total energy
result of 0.815Wh on JURECA and 0.805Wh on HAZEL HEN is expected for the computation. Using
these estimates the Watts of the Intel CPUs are a factor of 2.94 more than on the ODROID-MC1, the
consumed energy is, however, by factors of 0.76 and 0.75 smaller on the JURECA and HAZEL HEN.
To be more precise, the energy results per MLU are at 0.917 ·10−3Wh and 0.906 ·10−3Wh on the HPC
systems. In contrast, considering the power consumption of HAZEL HEN, which is at 3.2 MW 2, and
a node count of 7, 712, the power consumption per node equates to 414.94W . Using again only 16 of
the 24 cores approximately results in 276.63W , which is based on the assumption that a core requires
≈ 17.29W . This, however, distributes the remaining power consumption of the node over the cores,
i.e., it is necessary to add missing Watts for the mainboard and the peripherals. Taking additionally
the 8 idling CPUs into account, the power consumption can be estimated at ≈ 300W . This estimate
delivers energy results of 1.528Wh on JURECA and 1.51Wh on HAZEL HEN. The according energy
results per MLU equate to 1.719 · 10−3Wh and 1.7 · 10−3Wh. Based on these estimates, it is obvious
that the power consumption of the Intel-based systems are with a factor of 5.5 higher than on the
ODROID-MC1. Also the consumed energy is with factors 1.42 and 1.4 for JURECA and HAZEL HEN
higher than on the ODROID-MC1. These results are summarized in Tab. 8.

17

combustion
chamber

slot with
diameter D = 2b

outlet chamber

plenum

inlet inlet

outlet

(a) Slot burner configuration, which consists of two in-
lets leading into the plenum and a slot leading into the
main combustion chamber. The chamber is connected
to the outlet chamber. The Reynolds number Re is
based on the shorter diameter length of the slot D = 2b.

(b) Computational mesh of the slot burner configuration
consisting of C3 = 7.9 · 106 cells and levels lα = 7, lβ = 8,
and lγ = 10. Visible are the levels l = 8, . . . , 10.

Figure 9: Setup and computational mesh for the simulation of the flow in a three-dimensional slot burner configuration.

4.4. Simulation of the flow in a slot burner

To show that the ODROID-MC1 can indeed be used for scientific applications, a three-dimensional
simulation is run on the cluster using configuration h+

O = (4, 1, 4) for a slot burner case without
combustion. Figure 9a shows the schematic setup of the simulation. A mass flux is prescribed at the
two inlets leading into the plenum using a Dirichlet boundary condition for the velocity. The density
is extrapolated with a von Neumann condition at the inlets. A second-order accurate interpolated
bounce-back no-slip condition is employed at the wall [25]. The slot connects the plenum and the
combustion chamber, which merges into the outlet chamber. At the outlet, a Dirichlet condition for
the density and a von Neumann condition for the velocity is employed. The slot has a width of D and
a length of 7.4D. The slot half-width is b = D/2. The Reynolds number Re = vb ·D/ν is based on
the bulk velocity in the slot vb, the slot width D, and the viscosity of air ν, and is set to Re = 1, 750.
The computational mesh is shown in Fig. 9b and consists of C3 = 7.9 ·106 cells. The base level is given
by lα = 7. The mesh is uniformly refined to lβ = 8. The wall is refined up to level lβ+1 = 9 using the
boundary refinement method described in Sec. 2.1. Additionally, the slot and the slot outlet region
is refined to lγ = 10. The level increase is visible in the magnification insets of Fig. 9b. To reach

2HAZEL HEN Specs https://www.hlrs.de/systems/cray-xc40-hazel-hen/

18

https://www.hlrs.de/systems/cray-xc40-hazel-hen/

t = 400,000

t = 200,000 t = 300,000

t = 500,000

Figure 10: Simulation results of a slot burner configuration. The cross-sections and the vortical structures, which are
visualized by the ∆-criterion, are colored by the velocity magnitude. The cross-sections on the left are snapshots at
t = 500, 000.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.5 -1 -0.5 0 0.5 1 1.5

no
rm

al
iz

ed
 <

v
>

 x/b

Schlimpert et al.
present

(a) Profile at z = D = 2b.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-1.5 -1 -0.5 0 0.5 1 1.5

no
rm

al
iz

ed
 <

v
>

 x/b

Schlimpert et al.
present

(b) Profile at z = 2D = 4b.

Figure 11: Comparison of the profiles of the temporally averaged velocity magnitude < |v| > to the results from [35]
(ReS = 7, 000) at the two positions z = D and z = 2D downstream of the slot. The velocity is normalized by the
temporally averaged maximum slot velocity < vmax >.

19

a quasi-steady state the simulation is advanced for t = 500, 000 LBM iterations. The corresponding
residuals of the density and velocity components are monitored to guarantee an asymptotic behavior.
Figure 10 shows the corresponding results of the simulation. On the left side a cross-section though
center of the geometry at time step t = 500, 000 is shown. The cross-section is colored by the velocity
magnitude in LBM units. The inset shows the region where the jet from the slot enters the combustion
chamber. The contours correspond to intervals of the velocity magnitude. The images on the right
show the change of the vortical structures in the jet over LBM iterations t ∈ {200, 000, . . . , 500, 000}.
It is obvious that due to the strong shear layer between fluid at rest and the jet fluid the flow features
unsteady fluctuations. The vortical structures are visualized by the ∆-criterion, which is determined
by

∆ =

(

Q

3

)3

+

[

det (∇⊗ v)

2

]2

> 0, (4)

with the velocity vector v and the Q-criterion

Q =
1

2

(

|Ω|2 − |S|2
)

> 0 (5)

and the vorticity tensor Ω and the strain tensor S.
It should be noted that from the Reynolds number the viscosity and hence the relaxation factor is
calculated by Eq. 2, i.e., by

ν = ∆tc2s

(

1

ω∆t
−

1

2

)

=
vb ·D

Re
. (6)

That is, 0 < ω∆t < 2 must be ensured to keep the scheme stable. This can be achieved by keeping the
Reynolds number low or by increasing the resolution. Since latter is not possible due to the memory
limitations of the ODROID-MC1, the Reynolds number is Re = ReS/4, where ReS = 7, 000 is
the Reynolds number from Schlimpert et al. [35]. Fig. 11 furthermore compares the profiles of the
temporally averaged velocity magnitude < |v| > at z = D and z = 2D downstream of the slot to those
of [35]. The results are obtained by averaging the solution over 500, 000 LBM iterations starting at
t = 500, 000 and normalizing them by the maximum temporally averaged slot velocity < vmax >. From
both Fig. 11a and 11b it is obvious that the resolution at level lγ , which resolves the slot diameter by
D = 6 ·∆x, is not sufficient to reconstruct the full velocity profile. The maximum normalized velocity
for both cases is, however, matched well. It is clear that the velocity profile of the present solution is
due to the smaller Reynolds number thinner, i.e., the flow is in the laminar regime. Outside the jet
core the velocity is slightly overpredicted. Such a behavior for coarse solutions is also found in [35].
Furthermore, comparing the findings at z = D and z = 2D shows the fine solution at ReS = 7, 000 as
well as the coarse solution at ReS = 1, 750 to feature a more flat velocity profile at z = 2D.

5. Summary and conclusion

An LBM simulation code that is usually employed for large-scale flow simulations on HPC machines
has been used to measure the performance of an ODROID-MC1 cluster consisting of four ODROID-
XU4 nodes. The memory limitation of the cluster allowed to generate a maximum of 38 · 106 cells
with a massively parallel grid generator, a computation is, however, only possible on a maximum of
9.2 · 106 cells. This means, that from a memory point of view a single ODROID-MC1 is limited to the
simulation of small cases. An extension by further nodes, e.g., by another ODROID-MC1 or additional
nodes (ODROID-MC1 Solo) can break this limitation.

20

A single core performance analysis revealed the fast cores to be roughly 4.4 times faster than the slow
cores. Considering the whole node, the fast cores are still a factor of 2.1 faster for both pure MPI
or combined MPI/OpenMP measurements. The decrease of the performance difference was due to
band-width limitations, especially in the memory-intensive propagation step of the LBM. A change of
the OpenMP scheduling for these cases did not show a significant change in the run times. Inter-node
performance measurements using either the fast or slow cores revealed using a single MPI rank per
node and four OpenMP threads to deliver the smallest time to solution. Amongst all measurements,
this configuration showed to have the smallest communication times, hence resulting in the best scaling
performance. Using all cores of the cluster and distributing with different OpenMP scheduling schemes
showed the guided option to distribute the loops the most efficiently due to the best load-balancing
withing each MPI rank. Assigning the same amount of computational cells to the fast and slow cores
lead to idling fast cores that had to wait for the slow cores. From these findings it was evident that
inclusion of the slow cores in the computation does not make any sense, i.e., using only the fast cores
lead to the best results. Changing the cell distribution on the fast and slow cores according to the
performance difference between the CPUs did not change this fact. That is, despite the additional
slow cores represent additional computing power, the computation is limited by the memory bandwidth
making an inclusion of the slow cores pointless. Varying cell distributions were tested with two different
configurations with a different total amount of computational cells. A comparison of the performance
of the ODROID-MC1 to state-of-the-art supercomputers, such as the JURECA and the HAZEL HEN
system showed that by using the same amount of cores, the ODROID-MC1 is only ≈ 3.9 slower than
the HPC systems. This is due to the slower memory bandwidth and the lower CPU clocking. Looking
at the potential of a full JURECA or HAZEL HEN node, a single node leads to a ≈ 6.1 times faster
computation, i.e., by using Intel’s hyper-threading technology on all 24 available cores compared to
the 16 fast cores of the ODROID-MC1. The capabilities for large-scale computations of the code have
been shown by high scalabilities across the HPC systems JURECA, JUQUEEN, and HAZEL HEN.
The power consumption has been determined by measuring the Watts for a sample computation on
the ODROID-MC1. The findings showed the ODROID system to have a much lower power footprint
than Intel-based HPC systems. In more detail, the system consumes 54.5W under full load using only
the fast cores. This is by a factor of 5.5 below the power consumption of Intel-based nodes assuming a
consumption of 300W . For this case the Flop/s per Watt ratio is better on the ODROID-MC1 than on
the HPC systems using the same amount of cores on both the HPC systems and the ODROID-MC1.
Considering, however, only a TDP of 160W the HPC systems are slightly better than the ODROID-
MC1.
It has to be mentioned that the ODROID-MC1 is much more competitive than an HPC node. The
current price (status as of Nov. 2018) of an ODROID-MC1, excluding SD-cards, cables, and power
supplies is at $US220. In comparison, the price of a JURECA node, excluding any quantity discounts
that are usually given to HPC centers, is at approximately $US9,000 - $US10,000.
Finally, the applicability to engineering applications has been shown by running a three-dimensional
simulation of the flow in a slot burner configuration.

To summarize, the ODROID-MC1 is a promising system for the simulation of scientific flow prob-
lems. Its drawbacks result from the limited amount of available memory, the corresponding memory
bandwidth, and the low-performing Cortex-A7 cores. Performance-wise it can compete with single
nodes of HPC systems, considering small simulation cases. Its scalability still has to be tested for
larger node counts, it is, however, expected that the Gbit connectivity is not sufficient to allow for
high scalability, and hence for simulation cases that run on current HPC systems. It will certainly

21

be unable to compete with the high memory-bandwidths, high-performance network connectivity, and
hyper-threading technologies that are key to HPC systems. It is, however, fair to state that for local-
ized cluster solutions the ODROID-MC1 is definitely a prospective procurement option. This certainly
depends on the application. It should be noted that since the LBM investigated in this study operates
on unstructured data and uses explicit time stepping, the results can be considered typical for a whole
class of simulation codes that are rather memory- than compute-bound. Codes for the simulation of
flow problems belong to this class.

6. Outlook

The investigations revealed the propagation step in conjunction with the limited bandwidth being
the limiting factors in the performance of the ODROID-MC1. To get a deeper insight, the impact of the
memory layout and access patterns on the performance will be analyzed. A detailed inspection of cache
line misses and prospective performance gain using prefetching mechanisms will be performed. Since
only a single ODROID-MC1 was tested, only constrained information was collected on the scalability
of the system. Therefore, further nodes will be added to the cluster to investigate how the inter-node
performance (strong and weak scalability) develops for larger node counts and for larger problem sizes.
Also taking the step from 32-bit based systems to 64-bit systems suited for HPC, such as the ARMv8
Cavium ThunderX23, makes sense. That is, similar comparisons such as performed in this manuscript
could help to validate the suitability of ARMv8 systems for scientific computing. Since the present
study concentrates on memory-bound computational methods, it furthermore makes sense to extend
the investigations to more compute-bound applications in the future.

Acknowledgments

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (GCS)4, the Jülich
Aachen Research Alliance, High-Performance Computing (JARA-HPC)5 Vergabegremium, and the
Partnership for Advanced Supercomputing in Europe (PRACE)6 for funding this project by providing
computing time on the supercomputers JUQUEEN and JURECA at Jülich Supercomputing Centre
(JSC), and the HAZEL HEN systems at the High-Performance Computing Center Stuttgart (HLRS)
through the John von Neumann Institute for Computing (NIC), the JARA-HPC partition, and PRACE
partitions.

Conflict of interest declaration

The authors declare that there is no conflict of interest.

Supplementary materials

Underlying research materials can be obtained by contacting the authors of this manuscript.

3Cavium ThunderX2 https://www.cavium.com/product-thunderx2-arm-processors.html
4GCS http://www.gauss-centre.eu
5JARA-HPC https://www.jara.org/hpc
6PRACE http://www.prace-ri.eu

22

https://www.cavium.com/product-thunderx2-arm-processors.html
http://www.gauss-centre.eu
https://www.jara.org/hpc
http://www.prace-ri.eu

Appendix A. Library compilation options

The following libraries have been compiled to a shared location on the Synology NFS server.

The mpich-3.2.1 library is configured by:

./configure --enable-mpi-cxx --prefix=MPI PREFIX --disable-fortran

The fftw-3.3.7 library is configured by:

./configure --prefix=FFTW PREFIX --enable-mpi MPICC=MPI PREFIX/bin/mpicc

The parallel-netcdf-1.9.0 library is configured by:

./configure --prefix=PNETCDF PREFIX --with-mpi=MPI PREFIX

The munge-0.5.13 library is configured by:

./configure --prefix=MUNGE PREFIX

The pmix-2.1.0 library is configured by:

./configure --prefix=PMIX PREFIX

Appendix B. Simulation framwork compilation options on ODROID-MC1

The LBM simulation framework uses GCC 7.2.0 with the following compiler options:

-Wall -Wextra -std=c++11 -pedantic -Wshadow -Wfloat-equal -Wfloat-equal

-Wdisabled-optimization -Wformat=2 -Winvalid-pch -Winit-self -Wmissing-include-dirs

-Wredundant-decls -Wpacked -Wpointer-arith -Wnostack-protector -Wstrict-aliasing=3

-Wswitch-default -Wwrite-strings -Wlogical-op -Wno-array-bounds

-fdiagnostics-color -Wlogical-op -Wshift-overflow=2 -Wnull-dereference

-Wunused-const-variable=1 -O3 -fstrict-aliasing -fno-rtti -fno-exceptions

-fomit-frame-pointer -Wno-conversion -Wno-unused-result -Wno-implicit-fallthrough

-Wno-psabi -Wno-cast-align -Wnostack-protector -Wno-maybe-uninitialized

-DCOMPILER ATTRIBUTES -DUSE RESTRICT -DNDEBUG

Appendix C. Simulation framwork compilation options on JURECA and HAZEL HEN

The LBM simulation framework uses GCC 7.3.0 with the following compiler options on top of those
given in Appendix B:

-Wcast-align -Wconversion -Wunused-result -Wimplicit-fallthrough -Wstack-protector

Appendix D. Simulation framwork compilation options on JUQUEEN

The LBM simulation framework uses Clang 6.0 with the following compiler options:

-march=native -mtune=native -std=c++11 -stdlib=libc++ -Wall -Wextra

-pedantic -Wshadow -Wfloat-equal -Wcast-align -Wfloat-equal -Wdisabled-optimization

23

-Wformat=2 -Winvalid-pch -Winit-self -Wmissing-include-dirs -Wredundant-decls

-Wpacked -Wpointer-arith -Wstack-protector -Wswitch-default -Wwrite-strings

-Wno-type-safety -Werror -Wunused -Wno-infinite-recursion -fcolor-diagnostics

-Wno-inconsistent-missing-override -Wno-undefined-var-template

Appendix E. Slurm configuration

The slurm-17.11.5 scheduler is compiled with the following options:

./configure --prefix=SLURM PREFIX --sysconfdir=/etc/slurm --with-munge=MUNGE PREFIX

--with-pmix=PMIX PREFIX

The configuration file /etc/slurm/slurm.conf contains the options shown in Tab. E.9

A sample hybrid MPI/OpenMP job script using the fast cores of the ODROID-MC1 may look as
follows:

#!/bin/bash -x

#SBATCH --nodes=4

#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=4

#SBATCH --output=mpi-out.%j

#SBATCH --error=mpi-err.%j

#SBATCH --time=00:20:00

#SBATCH --partition=batch

export OMP NUM THREADS=${SLURM CPUS PER TASK}
srun --cpu-bind=verbose,mask cpu:0xf0 --mpi=pmi2 ./lbm

24

General options

ControlMachine fe

AuthType auth/munge

CryptoType crypto/munge

MpiDefault none

ProctrackType proctrack/pgid

ReturnToService 1

SlurmctldPidFile /var/run/slurm/slurmctld.pid

SlurmdPidFile /var/run/slurm/slurmd.pid

SlurmdSpoolDir /var/spool/slurmd

SlurmUser slurm

StateSaveLocation /var/spool/slurmctld

SwitchType switch/none

TaskPlugin task/affinity

TaskPluginParam sched

Scheduling options

FastSchedule 1

SchedulerType sched/backfill

SelectType select/cons res

SelectTypeParameters CR Core

Logging / accounting options

AccountingStorageType accounting storage/none

ClusterName odroid

JobAcctGatherType jobacct gather/none

SlurmctldDebug verbose

SlurmctldLogFile /var/log/slurmctld.log

SlurmdDebug verbose

SlurmdLogFile /var/log/slurmd.log

Compute node options

NodeName=cl[1-4] CPUs=8 RealMemory=1994 State=UNKNOWN

PartitionName=batch Nodes=cl[1-4] OverSubscribe=EXCLUSIVE \

Default=YES MaxTime=INFINITE State=UP

Table E.9: Slurm run time options.

25

References

[1] ARM Architecture Reference Manual, ARMv7-A and ARMv7-R Edition, ARM Ltd., 2014.

[2] ARMv8-A Reference Manual, issue b.a Edition, ARM Ltd., 2017.

[3] G. Halfacree, E. Upton, Raspberry Pi User Guide, 1st Edition, Wiley Publishing, 2012.

[4] A20 User Manual, rev. 1.1 Edition, Allwinner Technology Co., Ltd., 2013.

[5] R. Roy, V. Bommakanti, ODROID-XU4 Users Guide, rev. 20170310 Edition, Hard Kernel, Ltd.,
2015.

[6] Cortex-A15 Technical Reference Manual, rev. r0p3 Edition, ARM Ltd., 2011.

[7] Cortex-A7 MPCore Technical Reference Manual, rev. r2p0 Edition, ARM Ltd., 2012.

[8] G. Eitel, R. K. Freitas, A. Lintermann, M. Meinke, W. Schröder, Numerical Simulation of Nasal
Cavity Flow Based on a Lattice-Boltzmann Method, in: A. Dillmann, G. Heller, M. Klaas, H.-
P. Kreplin, W. Nitsche, W. Schröder (Eds.), New Results in Numerical and Experimental Fluid
Mechanics VII, Vol. 112 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design,
Springer Berlin / Heidelberg, 2010, pp. 513–520.

[9] G. Eitel, T. Soodt, W. Schröder, Investigation of Pulsatile flow in the Upper Human Air-
ways, International Journal of Design & Nature and Ecodynamics 5 (4) (2010) 335–353.
doi:10.2495/DNE-V5-N4-335-353.

[10] A. Lintermann, G. Eitel-Amor, M. Meinke, W. Schröder, Lattice-Boltzmann Solutions with Local
Grid Refinement for Nasal Cavity Flows, in: New Results in Numerical and Experimental Fluid
Mechanics VIII, Springer, 2013, pp. 583–590. doi:10.1007/978-3-642-35680-3_69.

[11] A. Lintermann, M. Meinke, W. Schröder, Investigations of Nasal Cavity Flows based on a Lattice-
Boltzmann Method, in: M. Resch, X. Wang, W. Bez, E. Focht, H. Kobayashi, S. Roller (Eds.),
High Performance Computing on Vector Systems 2011, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2012, pp. 143–158. doi:10.1007/978-3-642-22244-3.

[12] A. Lintermann, M. Meinke, W. Schröder, Investigations of the Inspiration and Heating Capabil-
ity of the Human Nasal Cavity Based on a Lattice-Boltzmann Method, in: Proceedings of the
ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows
(SIMBIO 2011), Brussels, Belgium, 2011.

[13] A. Lintermann, M. Meinke, W. Schröder, Fluid mechanics based classification of the respiratory
efficiency of several nasal cavities, Computers in Biology and Medicine 43 (11) (2013) 1833–1852.
doi:10.1016/j.compbiomed.2013.09.003.

[14] A. Lintermann, W. Schröder, A Hierarchical Numerical Journey Through the
Nasal Cavity: from Nose-Like Models to Real Anatomies, Flow, Turbulence and
Combustiondoi:10.1007/s10494-017-9876-0.

[15] A. Lintermann, W. Schröder, Simulation of aerosol particle deposition in the upper hu-
man tracheobronchial tract, European Journal of Mechanics - B/Fluids 63 (2017) 73–89.
doi:10.1016/j.euromechflu.2017.01.008.

26

http://dx.doi.org/10.2495/DNE-V5-N4-335-353
http://dx.doi.org/10.1007/978-3-642-35680-3_69
http://dx.doi.org/10.1007/978-3-642-22244-3
http://dx.doi.org/10.1016/j.compbiomed.2013.09.003
http://dx.doi.org/10.1007/s10494-017-9876-0
http://dx.doi.org/10.1016/j.euromechflu.2017.01.008

[16] A. Lintermann, S. Schlimpert, J. Grimmen, C. Günther, M. Meinke, W. Schröder, Massively par-
allel grid generation on HPC systems, Computer Methods in Applied Mechanics and Engineering
277 (2014) 131–153. doi:10.1016/j.cma.2014.04.009.

[17] J. Bonet, J. Peraire, An alternating digital tree (ADT) algorithm for 3D geometric searching and
intersection problems, International Journal for Numerical Methods in Engineering 31 (1) (1991)
1–17. doi:10.1002/nme.1620310102.

[18] H. Sagan, Space-Filling Curves, 1st Edition, Universitext, Springer New York, New York, NY,
1994. doi:10.1007/978-1-4612-0871-6.

[19] M. Folk, E. Pourmal, Balancing performance and preservation lessons learned with HDF5, in:
Proceedings of the 2010 Roadmap for Digital Preservation Interoperability Framework Workshop
on - US-DPIF ’10, 2010, pp. 1–8. doi:10.1145/2039274.2039285.

[20] J. Li, M. Zingale, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, Parallel netCDF: A High-Performance Scientific I/O Interface, in: Proceedings of
the 2003 ACM/IEEE conference on Supercomputing - SC ’03, ACM Press, New York, New York,
USA, 2003, p. 39. doi:10.1145/1048935.1050189.

[21] R. K. Freitas, A. Henze, M. Meinke, W. Schröder, Analysis of Lattice-
Boltzmann methods for internal flows, Computers & Fluids 47 (1) (2011) 115–121.
doi:10.1016/j.compfluid.2011.02.019.

[22] G. Eitel-Amor, M. Meinke, W. Schröder, A lattice-Boltzmann method with hierarchically refined
meshes, Computers & Fluids 75 (2013) 127–139. doi:10.1016/j.compfluid.2013.01.013.

[23] Y. H. Qian, Simulating thermohydrodynamics with lattice BGK models, Journal of Scientific
Computing 8 (3) (1993) 231–242. doi:10.1007/BF01060932.

[24] A. Dupuis, B. Chopard, Theory and applications of an alternative lattice Boltzmann grid refine-
ment algorithm, Physical Review E 67 (6) (2003) 1–7. doi:10.1103/PhysRevE.67.066707.

[25] M. Bouzidi, M. Firdaouss, P. Lallemand, Momentum transfer of a Boltzmann-lattice fluid with
boundaries, Physics of Fluids 13 (11) (2001) 3452–3459. doi:10.1063/1.1399290.

[26] V. Nikl, M. Hradecky, J. Keleceni, J. Jaros, The Investigation of the ARMv7 and Intel Haswell
Architectures Suitability for Performance and Energy-Aware Computing, in: ISC 2017: High
Performance Computing, Lecture Notes in Computer Science book series (LNCS, volume 10266),
2017, pp. 377–393. doi:10.1007/978-3-319-58667-0_20.

[27] D. Krause, P. Thörnig, JURECA: General-purpose supercomputer at Jülich Supercomputing Cen-
tre, Journal of large-scale research facilities JLSRF 2 (2016) A62. doi:10.17815/jlsrf-2-121.

[28] M. Stephan, J. Docter, JUQUEEN: IBM Blue Gene/Q Supercomputer System at the
Jülich Supercomputing Centre, Journal of large-scale research facilities JLSRF 1 (2015) A1.
doi:10.17815/jlsrf-1-18.

[29] M. Frigo, S. Johnson, The Design and Implementation of FFTW3, Proceedings of the IEEE 93 (2)
(2005) 216–231. doi:10.1109/JPROC.2004.840301.

27

http://dx.doi.org/10.1016/j.cma.2014.04.009
http://dx.doi.org/10.1002/nme.1620310102
http://dx.doi.org/10.1007/978-1-4612-0871-6
http://dx.doi.org/10.1145/2039274.2039285
http://dx.doi.org/10.1145/1048935.1050189
http://dx.doi.org/10.1016/j.compfluid.2011.02.019
http://dx.doi.org/10.1016/j.compfluid.2013.01.013
http://dx.doi.org/10.1007/BF01060932
http://dx.doi.org/10.1103/PhysRevE.67.066707
http://dx.doi.org/10.1063/1.1399290
http://dx.doi.org/10.1007/978-3-319-58667-0_20
http://dx.doi.org/10.17815/jlsrf-2-121
http://dx.doi.org/10.17815/jlsrf-1-18
http://dx.doi.org/10.1109/JPROC.2004.840301

[30] W. Yu, J. Vetter, R. S. Canon, S. Jiang, Exploiting Lustre File Joining for Effective Collective IO,
in: Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid ’07),
IEEE, 2007, pp. 267–274. doi:10.1109/CCGRID.2007.51.

[31] M. Vázquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra, R. Aŕıs, D. Mira, H. Cal-
met, F. Cucchietti, H. Owen, A. Taha, E. D. Burness, J. M. Cela, M. Valero, Alya: Multi-
physics Engineering Simulation Towards Exascale, Journal of Computational Science (2016) 6–
27doi:10.1016/j.jocs.2015.12.007.

[32] C. Moulinec, J. C. Uribe, J. Gotts, B. Xu, D. R. Emerson, Sleeve leakage gas impact on fuel
assembly temperature distribution, International Journal of Computational Fluid Dynamics 30 (6)
(2016) 419–424. doi:10.1080/10618562.2016.1218481.

[33] G. Wellein, T. Zeiser, G. Hager, S. Donath, On the single processor performance
of simple lattice Boltzmann kernels, Computers & Fluids 35 (8-9) (2006) 910–919.
doi:10.1016/j.compfluid.2005.02.008.

[34] S. Williams, A. Waterman, D. Patterson, Roofline, Communications of the ACM 52 (4) (2009)
65. doi:10.1145/1498765.1498785.

[35] S. Schlimpert, A. Feldhusen, J. H. Grimmen, B. Roidl, M. Meinke, W. Schröder, Hydrodynamic
instability and shear layer effects in turbulent premixed combustion, Physics of Fluids 28 (1)
(2016) 017104. doi:10.1063/1.4940161.

28

http://dx.doi.org/10.1109/CCGRID.2007.51
http://dx.doi.org/10.1016/j.jocs.2015.12.007
http://dx.doi.org/10.1080/10618562.2016.1218481
http://dx.doi.org/10.1016/j.compfluid.2005.02.008
http://dx.doi.org/10.1145/1498765.1498785
http://dx.doi.org/10.1063/1.4940161

	Introduction
	Numerical methods
	Grid generation
	Lattice-Boltzmann method

	Hardware and software stack
	ODROID-MC1
	JURECA supercomputer
	JUQUEEN supercomputer
	HAZEL HEN supercomputer

	Results
	Memory consumption
	Compute performance
	Single node performance
	Inter-node performance
	Performance of the complete cluster
	Comparison to the performance on an HPC system

	Power consumption
	Simulation of the flow in a slot burner

	Summary and conclusion
	Outlook
	Library compilation options
	Simulation framwork compilation options on ODROID-MC1
	Simulation framwork compilation options on JURECA and HAZEL HEN
	Simulation framwork compilation options on JUQUEEN
	Slurm configuration

