

Parallel & Scalable Machine Learning

Introduction to Machine Learning Algorithms

Prof. Dr. – Ing. Morris Riedel

Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 1

Parallel & Scalable Machine Learning driven by HPC

February 25th, 2019
Juelich Supercomputing Centre, Juelich, Germany

Outline

Outline of the Course

- 1. Parallel & Scalable Machine Learning driven by HPC
- 2. Introduction to Machine Learning Fundamentals
- 3. Introduction to Machine Learning Fundamentals
- 4. Feed Forward Neural Networks
- 5. Feed Forward Neural Networks
- 6. Validation and Regularization
- 7. Validation and Regularization
- 8. Data Preparation and Performance Evaluation
- 9. Data Preparation and Performance Evaluation
- 10. Theory of Generalization
- 11. Unsupervised Clustering and Applications
- 12. Unsupervised Clustering and Applications
- 13. Deep Learning Introduction

Theoretical Lectures

Practical Lectures

Outline

- Machine Learning driven by HPC
 - Welcome & Course Goals, Content & Timeliness
 - Big Data & Machine/Deep Learning
 - Understanding High Performance Computing
 - Multi-Core vs. Many-Core Technologies
 - Pan-European HPC Infrastructure PRACE
- Parallel & Scalable Technology
 - DEEP-EST & Modular Supercomputing
 - JSC Infrastructure for Tutorial
 - Python, NumPy & Vectorization Approach
 - Account Checks & Jupyter Notebooks
 - SSH Clients & HPC Modules

Machine Learning driven by HPC

Welcome @ Juelich Supercomputing Centre (JSC)

- Part of Research Centre 'Forschungszentrum Jülich' in Germany
 - Founded in 1956 as nuclear research facility, staff ~4500
 - 90% Federal Republic of Germany; 10% State of North Rhine-Westphalia
 - Research Areas: Health, Energy & Environment, Information, Key
 Competency (e.g. HPC and computational science, big data processing)
- JSC is part of the Insitute for Advanced Simulation (IAS)
 - Operate supercomputers (→ TOP500), cloud systems, and large storages
 - Enable scientists to solve complex problems via simulations and analytics

[12] Juelich Supercomputing Centre Web page

High Productivity Data Processing Research Group @ JSC

Course Goals

Fundamentals

Practical Skills

Advancements

Technology

Community Building

→ Join our JOint International Machine Learning Laboratory (JOIML)

Machine Learning in Context & Course Focus

Artificial Intelligence (AI)

A wide area of techniques and tools that enable computers to mimic human behaviour

Machine Learning (ML)

Learning from data without explicitly being programmed with common programming languages

Deep Learning (DL)

Systems with the ability to learn underlying features in data using large neural networks

Machine Learning Models – Overview

 Machine learning methods can be roughly categorized in classification, clustering, or regression augmented with various techniques for data exploration, selection, or reduction

Classification

Clustering

Regression

- Groups of data exist
- New data classified to existing groups
- No groups of data exist
- Create groups from data close to each other
- Identify a line with a certain slope describing the data
- > This course focus on supervised classification techniques and unsupervised clustering methods

Machine Learning Prerequisites & Challenges

- 1. Some pattern exists
- 2. No exact mathematical formula
- 3. Data exists
- Idea 'Learning from Data'

Shared with a wide variety of other disciplines

E.g. signal processing, data mining, etc.

- Challenges
 - Data is often complex
 - Learning from data requires processing time → Clouds

- Machine learning is a very broad subject and goes from very abstract theory to extreme practice ('rules of thumb')
- Training machine learning models needs processing time
- > This course addressed machine learning & data science with a focus on parallel & scalable HPC

Course Timeliness

- Machine learning dates back decades
 - We observe a momentum around AI, DL, and ML why today?

1952 Stochastic Gradient Descent Optimization 1958 Perceptron Linear Learning Model Learnable Weights 1958 Backpropagation of Error in Learning through Layers Multi-Layer Perceptron 1995 Deep Convolutional **Neural Networks Image Recognition**

Big Data

- Larger datasets
- Easier access to collections
- Better transport to storage

Hardware

- More memory
- Graphical **Processing** Units (GPUs)
- Massively parallel systems

Software

Improved scalable techniques

Keras

- New models
- Open source frameworks & toolsets

[1] Keras

[3] NVIDIA

[2] TensorFlow

Big Data Motivation: Intertwine HPC & Machine Learning

- Rapid advances in data collection and storage technologies in the last decade
 - Extracting useful information is a challenge considering ever increasing massive datasets
 - Traditional data analysis techniques cannot be used in growing cases (e.g. memory, speed, etc.)

(yellow blocks very important to learn for exams)

- Machine learning / Data Mining is a technology that blends traditional data analysis methods with sophisticated algorithms for processing large volumes of data
- Machine Learning / Data Mining is the process of automatically discovering useful information in large data repositories ideally following a systematic process

modified from [4] Introduction to Data Mining

- Machine Learning & Statistical Data Mining
 - Traditional statistical approaches are still very useful to consider
 - Deep Learning tools become effective and are available in Clouds today

'Big Data' drives Deep Learning Models

- Approach: Learn Features
 - Classical Machine Learning
 - (Powerful computing evolved)
 - Deep (Feature) Learning

Engeneer

Transfrom Reduce

- Very successful for image recognition and other emerging areas
- Assumption: data was generated by the interactions of many different factors on different levels (i.e. form a hierarchical representation)

Data

We offer a short introduction to deep learning at the enf of this machine learning course

Relationship Machine/Deep Learning & Big Data & HPC

Understanding High Performance Computing

High Performance Computing (HPC) is based on computing resources that enable the efficient use of parallel computing techniques through specific support with dedicated hardware such as high performance cpu/core interconnections.

High Throughput Computing (HTC) is based on commonly available computing resources such as commodity PCs and small clusters that enable the execution of 'farming jobs' without providing a high performance interconnection between the cpu/cores.

network			Г
interconnection			
less important!	Ш	Ш	L

This course focus on parallel & scalable methods using High Performance Computing (HPC)

Parallel Computing

- All modern supercomputers depend heavily on parallelism
 - We speak of parallel computing whenever a number of 'compute elements' (e.g. cores) solve a problem in a cooperative way

[7] Introduction to High Performance Computing for Scientists and Engineers

- Often known as 'parallel processing' of some problem space
 - Tackle problems in parallel to enable the 'best performance' possible
- 'The measure of speed' in High Performance Computing matters
 - Common measure for parallel computers established by TOP500 list
 - Based on benchmark for ranking the best 500 computers worldwide

[8] TOP 500 supercomputing sites

Parallel Computing: Shared Memory vs. Distributed Memory

SharedMemory

Massively Parallel Computers

Distributed Memory

[7] Introduction to High Performance Computing for Scientists and Engineers

- A shared-memory parallel computer is a system in which a number of CPUs work on a common, shared physical address space
- A distributed-memory parallel computer establishes a 'system view' where no process can access another process' memory directly

Multi-core CPU Processors

- Significant advances in CPU (or microprocessor chips)
 - Multi-core architecture with dual, quad, six, or n processing cores
 - Processing cores are all on one chip
- Multi-core CPU chip architecture
 - Hierarchy of caches (on/off chip)
 - L1 cache is private to each core; on-chip
 - L2 cache is shared; on-chip
 - L3 cache or Dynamic random access memory (DRAM); off-chip

Core 1 Core 2 Core n
L1 cache L2 cache

L2 cache

L3 cache/DRAM

[21] Distributed & Cloud Computing Book

- Clock-rate for single processors increased from 10 MHz (Intel 286) to 4 GHz (Pentium 4) in 30 years
- Clock rate increase with higher 5 GHz unfortunately reached a limit due to power limitations / heat
- Multi-core CPU chips have quad, six, or n processing cores on one chip and use cache hierarchies

Many-core GPUs

- Graphics Processing Unit (GPU) is great for data parallelism and task parallelism
- Compared to multi-core CPUs, GPUs consist of a many-core architecture with hundreds to even thousands of very simple cores executing threads rather slowly
- Use of very many simple cores
 - High throughput computing-oriented architecture
 - Use massive parallelism by executing a lot of concurrent threads slowly
 - Handle an ever increasing amount of multiple instruction threads
 - CPUs instead typically execute a single long thread as fast as possible
- Many-core GPUs are used in large clusters and within massively parallel supercomputers today
 - Named General-Purpose Computing on GPUs (GPGPU)

[21] Distributed & Cloud Computing Book

GPU Acceleration

- CPU acceleration means that GPUs accelerate computing due to a massive parallelism with thousands of threads compared to only a few threads used by conventional CPUs
- GPUs are designed to compute large numbers of floating point operations in parallel
- GPU accelerator architecture example (e.g. NVIDIA card)
 - GPUs can have 128 cores on one single GPU chip
 - Each core can work with eight threads of instructions
 - GPU is able to concurrently execute 128 * 8 = 1024 threads
 - Interaction and thus major (bandwidth) bottleneck between CPU and GPU is via memory interactions
 - E.g. applicationsthat use matrix –vector multiplication

[21] Distributed & Cloud Computing Book

Parallel Matrix-Vector Multiplication Example on GPUs

■ PO – P4 are processes on four GPU cores

- Step one: each GPU core has a column of matrix B (named as Bpart)
- Step one: each GPU core has an element of column vector C (named Cpart)
- Step two: Each GPU core performs an independent vector-scalar multiplication (based on their Bpart and Cpart contents)
- Step three: Each GPU core has a part of the result vector A (named Apart) and is written in device memory

(GPUs are designed to compute large numbers of floating point operations in parallel)

[21] Distributed & Cloud Computing Book

Summary: Centralized Computing & Parallel Computing

Centralized Computing

- All computer resources are centralized in one physical system
- All resources (e.g. processors, memory, storage, etc.) fully shared and tightly coupled within one integrated operating system
- Many data centers & supercomputers are centralized systems

Parallel Computing

- All processors can be tightly coupled using shared memory
- All processors can be loosely coupled using distributed memory
- Interprocessor communication via shared memory or message passing
- Computer systems capable of parallel computing is a parallel computer
- Programs running in a parallel computer are called parallel programs
- Process of writing parallel programs is referred to as parallel programming

[Video] JUQUEEN - Supercomputer Upgrade Example

Partnership for Advanced Computing in Europe (PRACE)

Basic Facts

HPC-driven infrastructure

 An international not-for-profit association under Belgien law (with its seat in Brussels)

Has 25 members and2 observers

 Governed by the PRACE Council in which each member has a seat

 Daily management of the association is delegated to the Board of Directors

[9] PRACE

PRACE as Persistent pan-European HPC Infrastructure

Mission:

enabling world-class science through large scale simulations

Offering:

HPC resources on leading edge capability systems

Resource award:

through a single and fair pan-European peer review process for open research

PRACE – History

[9] PRACE

The Partnership for Advanced Computing in Europe (PRACE) is a persistent pan-European supercomputing infrastructure that offers HPC resources through a single and fair pan-European peer review process for open research

PRACE European vs. Regional Systems

PRACE Achievements

More than 500 scientific projects enabled

 Over 14 thousand million core hours awarded since 2010

Of which 63% are trans-national

 R&D access to industrial users with >50 companies supported

 More 60 Pflop/s of peak performance on 7 world-class systems

 25 members, including 5 hosting members (France, Germany, Italy, Spain and Switzerland)

[9] PRACE

PRACE – Scientific Domains

PRACE – Current Services at a Glance

For academia and industry

Tier-0 systems (open R&D)

- Project Access
 - 1-3 years
- Preparatory Access Type A, B, C, D

Tier-1 systems (open R&D)

DECI Programme

Application Enabling & Support

- Preparatory access Type C
- Preparatory access Type D
 - Tier-1 for Tier-0
- SHAPE
- HLST support

Training

- Training Portal
- PATC, PTC
- Seasonal Schools & on demand
- International HPC Summer School
- MOOC
- Code Vault
- Best Practice Guides
- White Papers

PRACE Partners

Communication, Dissemination, Outreach

- Website
- PR
- Scientific Communication
- Summer of HPC

Operation & Coordination of the common PRACE Operational Services

- Service Catalogue
- PRACE MD-VPN network
- Security

HPC Commissioning & Prototyping

- Technology Watch, PCP activity
- Infrastructure WS
- Best Practices
- UEABS

[9] PRACE

PRACE Advanced Training Centers (PATC) & Portal

Selected Facts

- More than 10 000 people trained by 6 PRACE Advanced Training Centers (PATC) and other events
- Training portal consists of valuable material in all fields related to HPC
 & supercomputing
- Easy search function to find materials of past events
- Material of this training will be also available after the event

[10] PRACE Training Portal

[Video] PRACE – Introduction to Supercomputing

[6] YouTube, 'PRACE – Introduction to Supercomputing'

Parallel & Scalable Technologies

Python Programming Language

Selected Benefits

Simple & flexible programming language

[13] Webpage Python

- Is an interpreted powerful programming language
- Has Efficient high-level data structures
- Provides a simple but effective approach to object-oriented programming
- Powerful libraries like 'math' library for inputs of functions with real numbers
- Python script support is offered in almost every cloud computing environment as a programming language today

```
# usual start script hello world
print('Hello World!')
print("2 + 2 =", 2 + 2)
print("3 * 4 is", 3 * 4)
print('Goodbye!')
```

```
Hello World!
2 + 2 = 4
3 * 4 is 12
Goodbye!
```

- Python is an ideal language for fast scripting and rapid application development that in turn makes it interesting for the machine learning modeling process and easy access to cloud resources
- > Our course assignments take advantage of Python, but nobody needs to be a full Python Expert

Python Programming Language – Importance & Reasoning

- Key Benefits for this course (and beyond)
 - Relatively small number of lines of code needed
 - Great libraries & community support (e.g. numpy, tensorflow, keras, etc.)
 - Work with many students reveal: qucky & easy to learn for experiments

[16] F. Chollet, 'Deep Learning with Python' Book

- The machine learning modeling process in general and the deep learning modeling process in particular requires iterative and highly flexible approaches when working with 'big data'
- E.g. network topology prototyping, hyper-parameter tuning, data sampling, etc.
- Our course assignments take advantage of Python, but nobody needs to be a full Python Expert

Powerful NumPy Python Library

Selected features

- Useful linear algebra and random number capabilities
- Supports powerful N-dimensional array objects
- Interesting broadcasting functions
- Tools for integrating C/C++ and Fortran code
- Particularly nicely supports work on vectors
 & matrices that are useful when working
 with machine learning & big data

[14] NumPy Library Web Page

```
import numpy as np
vector = np.random.randn(1,3)
print(vector)
```

[[1.01803478 0.21455826 0.5541203]]

(small number of code lines to create & print a 1x3 row vector with 3 random values)

- NumPy is one of the most important Python libraries used in cloud computing and big data analysis
- NumPy is used as an efficient multi-dimensional container of generic data, vectors, matrices, etc.
- Instead of math library used for functions with real numbers we use NumPy for vectors & matrices
- Our course assignments take advantage of NumPy for various aspectes like working with vectors

Simple Python/NumPy & Vectorization

- 'Small-scale example' of the power of 'parallelization'
 - Enables element-wise computations at the same time (aka in parallel)
 - 'small-scale' since we are still within one computer but perform operations in parallel on different data
 - Supported on the hardware-level (i.e. register, etc.) & less lines of code
 - Impact matters much for 'big data' computing [15] Blog (e.g. machine learning & deep learning : matrix/vector multiplications)

not vectorized		vectorized	
а	b	a	b
1	* 6	1	6
2	* 7	2 *	7
3	* 8	3	8
	* 9	4	9
4			
5	* 10	5 *	10
5 operations		2 operations	

- Vectorization in Python uses optimized & pre-compiled C code to perform operations over data sequences of the same data type (i.e. numpy array/vector instead of Python tuples or lists)
- Vectorized functions are multiple times faster than using operations in explicit for-loop statements
- Avoid explicit for-loops via vectorized Single Instruction Multiple Data (SIMD) functions in NumPy
- > Underlying machine learning frameworks we use in the tutorial take advantage of vectorization

Simple Python/NumPy & Vectorization Example

```
import numpy as np
import time
vector a = np.random.rand(100000)
vector b = np.random.rand(100000)
t start = time.time()
vector_c = np.dot(vector_a, vector_b) # vectorized function
t end = time.time()
print(vector c)
print("Computing time using vectorization: " + str(1000*(t end-t start)) + " ms")
25013.11080224216
Computing time using vectorization: 15.622138977050781 ms
t start = time.time()
vector c = 0
for i in range (100000):
 vector_c += vector_a[i] * vector_b[i]
t end = time.time()
print(vector c)
print("Computing time using explicit for-loops: " + str(1000*(t end-t start)) + " ms")
25013.110802242478
Computing time using explicit for-loops: 55.59992790222168 ms
```

Jupyter Tool – Interactive Data Analysis using Clouds

- Selected Facts
 - Interactive & Web-based
 Computing tool using the
 Web browser on local machine
 - Facilitates access to different available cloud platforms
 - Often used in data analysis
 - Part of the Anaconda distribution


```
In [ ]: # usual start script hello world

print('Hello World!')
print("2 + 2 =", 2 + 2)
print("3 * 4 is", 3 * 4)
print('Goodbye!')
```



```
In [1]: # usual start script hello world

print('Hello World!')
print("2 + 2 =", 2 + 2)
print("3 * 4 is", 3 * 4)
print('Goodbye!')

Hello World!
2 + 2 = 4
3 * 4 is 12
Goodbye!
```

- Jupyther enables the creation and sharing of source codes using so-called 'Jupyther notebooks'
- Jupyther notebooks contain live code, equations, formulas, visualizations & explanatory text

The Jupyter tool is used in practical lectures & our assignments via various Jupyther notebooks

Jupyther Tool Example – Starting a Python Command Shell

- Startup Jupyter
 - E.g. new menu → Python 3

Anaconda Distribution (for 'serial computing' at home)

- Selected Facts
 - Free & open source distribution
 - Installs Python as well separate from other installed versions
 - Installation of 1,400+ data science packages for Python & Statistical Computing with R
 - Available for Windows,Mac & Linux
 - Anaconda significantly simplifies the Windows setup

[18] Anaconda Web page

- The Anaconda distribution includes multiple tools for installing & updating Python & its package
- Anaconda represents one of the most popular Python data science platforms (~6 million users)
 - Recommendation to install Anaconda to experiment locally on the laptop before using Clouds

Using Python & TensorFlow in Tutorial

- Cloud Computing
 - Enables large-scale deep learning from 'big data'
 - Deep learning library TensorFlow

[19] Tensorflow Deep Learning Framework

(works well on graphical processing units = GPUs)

[21] Distributed & Cloud Computing Book

- Tensorflow is an open source library for deep learning models using a flow graph approach
- Tensorflow nodes model mathematical operations and graph edges between the nodes are socalled tensors (also known as multi-dimensional arrays)
- The Tensorflow tool supports the use of CPUs and GPUs (much more faster than CPU versions)
- Tensorflow work with the high-level deep learning tool Keras in order to create models fast
- Our course assignments take advantage of TensorFlow in conjunction with Python scripts & libs

Deep Learning in Clouds – What are Tensors?

[22] Big Data Tips, What is a Tensor?

- A Tensor is nothing else than a multi-dimensional array often used in scientific & engineering environments
- Tensors are best understood when comparing it with vectors or matrices and their dimensions
- Those tensors 'flow' through the deep learning network during the optimization / learning & inference process

Tensors will be used throughout the tutorial for data & used during machine learning methods

Using Python & Keras on top of TensorFlow in Tutorial

- Cloud Computing
 - Enables large-scale deep learning from 'big data'
 - Deep learning library Keras on top of TensorFlow

[1] Keras Python Deep Learning Library

- Keras is a high-level deep learning library implemented in Python that works on top of existing other rather low-level deep learning frameworks like Tensorflow, CNTK, or Theano
- The key idea behind the Keras tool is to enable faster experimentation with deep networks
- Created deep learning models run seamlessly on CPU and GPU via low-level frameworks
- Our course assignments take advantage of Keras in conjunction with Python scripts & libs

DEEP Projects & Partners

- DEEP
 - Dynamic Exascale Entry Platform
- 3 EU Exascale projects
 DEEP
 DEEP-ER
 DEEP-EST
- 27 partnersCoordinated by JSC
- EU-funding: 30 M€ JSC-part > 5,3 M€
- Nov 2011 Mar 2021

 [24] DEEP-EST EU Project

DEEP-EST Approach – Modular Supercomputing

[27] E. Erlingsson, M. Riedel et al., IEEE MIPRO Conference, 2018

[24] DEEP-EST EU Project

DEEP-EST EU Project & Modular Supercomputing

IBM Power 4+ JUMP (2004), 9 TFlop/s

IBM Blue Gene/L

IBM Power 6 JUMP, 9 TFlop/s

HPC-FF

JUROPA 200 TFlop/s

100 TFlop/s

JURECA Cluster (2015) 2.2 PFlop/s

File Server

GPFS,

Proof of Concept in European DEEP Project

JUBL, 45 TFlop/s IBM Blue Gene/P

JUGENE, 1 PFlop/s

IBM Blue Gene/Q **JUQUEEN (2012)** 5.9 PFlop/s

JURECA Booster (2017) 5 PFlop/s

Hierarchican Storage Server Modular Supercomputer

JUWELS Scalable Module (2019/20) 50+ PFlop/s

Hignry scalable

JUWELS Cluster Module (2018) 12 PFlop/s

General Purpose Cluster

Tutorial: JURECA HPC System

[24] DEEP-EST EU Project

JURECA

- T-Platforms V210 blade server solution
 - Dual-socket Intel Xeon Haswell CPUs
- Mellanox InfiniBand EDR network
- Peak: 1.8 PF (CPUs) + 0.4 PF (GPUs)
- 281 TiB main memory
- 100 GBps storage bandwidth

- Dell PowerEdge C6320P solution
 - Intel Xeon Phi "Knights Landing" 7250-F
- Intel OPA network
- Peak: 5 PF
- 157 TiB main memory + 26 TiB MCDRAM
- 200 GBps storage BW

JURECA CLUSTER & BOOSTER Module @ JSC

Tutorial Machine: JSC JURECA System – CLUSTER Module

Characteristics

- Login nodes with 256 GB memory per node
- 45,216 CPU cores
- 1.8 (CPU) + 0.44 (GPU)Petaflop/s peak performance
- Two Intel Xeon E5-2680 v3 Haswell CPUs per node: 2 x 12 cores, 2.5 GhZ
- 75 compute nodes equipped with two NVIDIA K80 GPUs (2 x 4992 CUDA cores)

Architecture & Network

- Based on T-Platforms V-class server architecture
- Mellanox EDR InfiniBand high-speed network with non-blocking fat tree topology
- 100 GiB per second storage connection to JUST

[24] JURECA HPC System

- Use our ssh keys to get an access and use reservation
- Put the private key into your ./ssh directory (UNIX)
- Use the private key with your putty tool (Windows)

Interconnect GPUs with Horovod – JURECA System Example

- Simple Image Benchmark on JURECA JSC HPC System
 - 75 x 2 NVIDIA Tesla K80/node dual GPU design
 - 1.2 mio images with 224 x 224 pixels

#GPUs	images/s	speedup	Performance per GPU [images/s]
1	55	1.0	55
4	178	3.2	44.5
8	357	6.5	44.63
16	689	12.5	43.06
32	1230	22.4	38.44
64	2276	41.4	35.56
128	5562	101.1	43.45

(absolute number of images per second and relative speedup normalized to 1 GPU are given)

[23] A. Sergeev, M. Del Balso,'Horovod', 2018

(setup: TensorFlow 1.4, Python 2.7, CUDA 8, cuDNN 6, Horovod 0.11.2, MVAPICH-2.2-GDR)

- Open source tool Horovod enables distributed deep learning with TensorFlow / Keras
- Machine & Deep Learning: speed-up is just secondary goal after 1st goal accuracy
- Speed-up & parallelization good for faster hyperparameter tuning, training, inference
- Third goal is to avoid much feature engineering through 'feature learning'

Jupyter Access to JURECA System

Welcome to Jupyter@JSC

Sign in with JSC Authentication Service

Useful Links

Exercise Plan A – Using Jupyter

Use with your prepared account: https://jupyter-jsc.fz-juelich.de

Exercise Plan B – Login to JURECA with SSH

JURECA System – SSH Login

- Use your account train004 train050
- Windows: use putty or MobaXterm (better with x-server)
- UNIX: ssh yourname@jureca.fz-juelich.de
- Example

Using SSH Clients for Windows

Example: using the Putty SSH client
 (other SSH tools exist, e.g. could be MoabXTerm, etc.)

Scheduling Principles – SLURM Scheduler in Tutorial

- HPC Systems are typically not used in an interactive fashion
 - Program application starts 'processes' on processors ('do a job for a user')
 - Users of HPC systems send 'job scripts' to schedulers to start programs
 - Scheduling enables the sharing of the HPC system with other users
 - Closely related to Operating Systems with a wide varity of algorithms
- E.g. First Come First Serve (FCFS)
 - Queues processes in the order that they arrive in the ready queue.
- E.g. Backfilling
 - Enables to maximize cluster utilization and throughput
 - Scheduler searches to find jobs that can fill gaps in the schedule
 - Smaller jobs farther back in the queue run ahead of a job waiting at the front of the queue (but this job should not be delayed by backfilling!)
- Scheduling is the method by which user processes are given access to processor time (shared)

Example: Supercomputer BlueGene/Q

Jobscript JURECA Example & Reservation

```
#!/bin/bash -x
#SBATCH--nodes=2
#SBATCH--ntasks=48
#SBATCH--ntasks-per-node=24
#SBATCH--output=mpi-out.%j
#SBATCH--error=mpi-err.%j
#SBATCH--time=06:00:00
#SBATCH--partition=batch
#SBATCH--mail-user=m.riedel@fz-juelich.de
#SBATCH--mail-type=ALL
#SBATCH--job-name=train-indianpines-2-48-24
#SBATCH--reservation=ml-hpc-1
```

- Every day the reservation string is changed on the HPC systems (below)
- Change the number of nodes and tasks to use more or less CPUs for jobs
- Use the command sbatch <jobsript> in order to submit parallel jobs to the supercomputer and remember your <job id> returned
- Use the command squeue –u <userid> in order to check the status of your parallel job

```
### location executable
PISVM=/homea/hpclab/train001/tools/pisvm-1.2.1/pisvm-train
#PISVM=/homeb/zam/mriedel/tools/pisvm-1.2.1jurecanew/pisvm-train
### location data
TRAINDATA=/homea/hpclab/train001/data/indianpines/indian_processed_training.el
#TRAINDATA=/homeb/zam/mriedel/bigdata/172-indianpinesrawproc/indian_processed_training.el
### submit
srun $PISVM -D -o 1024 -q 512 -c 100 -g 8 -t 2 -m 1024 -s 0 $TRAINDATA
```

HPC Environment – Modules

- Module environment tool
 - Avoids to manually setup environment information for every application
 - Simplifies shell initialization and lets users easily modify their environment
- Module avail
 - Lists all available modules on the HPC system (e.g. compilers, MPI, etc.)
- Module spider
 - Find modules in the installed set of modules and more information
- Module load
 - Loads particular modules into the current work environment, E.g.:

```
[train001@jrl12 ~]$ module load GCC

Due to MODULEPATH changes, the following have been reloaded:
   1) binutils/.2.29

The following have been reloaded with a version change:
   1) GCCcore/.5.4.0 => GCCcore/.7.2.0

[train001@jrl12 ~]$ module load ParaStationMPI/5.2.0-1
[train001@jrl12 ~]$ module load HDF5/1.8.19
```

[Video] Parallel I/O with I/O Nodes

[11] Simplifying HPC Architectures, YouTube Video

Appendix A – Selected NumPy Commands

Powerful NumPy Python Library

Selected features

- Useful linear algebra and random number capabilities
- Supports powerful N-dimensional array objects
- Interesting broadcasting functions
- Tools for integrating C/C++ and Fortran code
- Particularly nicely supports work on vectors
 & matrices that are useful when working
 with machine learning & big data

[14] NumPy Library Web Page

```
import numpy as np

vector = np.random.randn(1,3)
print(vector)
```

[[1.01803478 0.21455826 0.5541203]]

(small number of code lines to create & print a 1x3 row vector with 3 random values)

- NumPy is one of the most important Python libraries used in cloud computing and big data analysis
- NumPy is used as an efficient multi-dimensional container of generic data, vectors, matrices, etc.
- Instead of math library used for functions with real numbers we use NumPy for vectors & matrices
- Our course assignments take advantage of NumPy for various aspectes like working with vectors

Basic Variables

```
In [1]: # usual start script hello world

print('Hello World!')
print("2 + 2 =", 2 + 2)
print("3 * 4 is", 3 * 4)
print('Goodbye!')

Hello World!
2 + 2 = 4
3 * 4 is 12
Goodbye!
```

Basic Loops

For Loop

```
Syntax:
for <variable> in <sequence>:
  <statements>
  else:
    <statements>
```

```
In [2]: languages = ["German", "Spanish", "Icelandic", "Italian"]
    for x in languages:
        print(x)

German
    Spanish
    Icelandic
    Italian
```

If Statements

```
In [5]: languages = ["German", "Spanish", "Icelandic", "Italian"]
    for x in languages:
        print(x)
        if x == "Icelandic":
            print("Welcome to University of Iceland!")
            break
```

German
Spanish
Icelandic
Welcome to University of Iceland!

Working with Vectors – Load NumPy Library

```
import NumPy as np
                                      (could be imported in another cell than the
                                         current one - was it really executed?
vector = np.random.randn(1,5)
                                        otherwise np is unknown – the cells are
print(vector)
                                          connected throughout the script)
ModuleNotFoundError
                                        Traceback (most recent call last)
<ipython-input-1-4a91256c61d5> in <module>()
----> 1 import NumPy as np
      3 vector = np.random.randn(1,5)
     4 print(vector)
ModuleNotFoundError: No module named 'NumPy'
import numpy as np
                                                               (notice Python &
                                                                case sensitivity)
vector = np.random.randn(1,5)
print(vector)
```

Vectors

- Note difference rank 1 arrays & true vectors
 - Difference is important and lead to many bugs in scripts when working with machine & deep learning models

```
In [3]: import numpy as np

vector = np.random.randn(5)
print(vector)
print(vector.shape)

[-1.53573965 0.51872255 -0.82611958 0.94804364 -0.5318634 ]
(5,)
```

```
In [5]: vectornew = np.random.randn(1,5)
    print(vectornew)
    print(vectornew.shape)

[[ 1.61773902 -0.75865461  0.81150118  0.73271955 -1.75471367]]
    (1, 5)
```

Matrices

Lecture Bibliography

Lecture Bibliography (1)

[1] Keras Python High-Level Deep Learning Library,

Online: https://keras.io/

[2] TensorFlow Python Low-Level Deep learning Library,

Online: https://www.tensorflow.org/

[3] NVIDIA Web Page,

Online: https://www.nvidia.com/en-us/

- [4] Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Addison Wesley, ISBN 0321321367, English, ~769 pages, 2005
- [5] H. Lee et al., 'Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations', Proceedings of the 26th annual International Conference on Machine Learning (ICML), ACM, 2009
- [6] PRACE Introduction to Supercomputing,
 Online: https://www.youtube.com/watch?v=D94FJx9vxFA
- [7] Introduction to High Performance Computing for Scientists and Engineers, Georg Hager & Gerhard Wellein,
 Chapman & Hall/CRC Computational Science, ISBN 143981192X, English, ~330 pages, 2010
- [8] TOP500 Supercomputing Sites,
 - Online: http://www.top500.org/
- [9] Partnership for Advanced Computing in Europe (PRACE),

Online: http://www.prace-ri.eu/

[10] PRACE Training Portal,

Online: http://www.training.prace-ri.eu/material/index.html

Lecture Bibliography (2)

- [11] YouTube Video, 'Big Ideas: Simplifying High Performance Computing Architectures',
 Online: https://www.youtube.com/watch?v=ISS_OGVamBk
- [12] Juelich Supercomputing Centre Web page, Online: http://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html
- [13] Official Web Page for Python Programming Language,
 Online: https://www.python.org/
- [14] Numpy Python Library Web Page,
 Online: http://www.numpy.org/
- [15] Blog 'Vectorization and parallelization in Python with NumPy and Pandas', Online: https://datascience.blog.wzb.eu/2018/02/02/vectorization-and-parallelization-in-python-with-numpy-and-pandas/
- [16] François Chollet 'Deep Learning with Python', Book, ISBN 9781617294433, 384 pages, 2017,
 Online: https://www.manning.com/books/deep-learning-with-python
- [17] Jupyther Web page,Online: http://jupyter.org/
- [18] Anaconda Web page,

Online: https://www.anaconda.com/

- [19] Tensorflow Deep Learning Framework,
 Online: https://www.tensorflow.org/
- [20] A Tour of Tensorflow,

Online: https://arxiv.org/pdf/1610.01178.pdf

Lecture Bibliography (3)

- [21] K. Hwang, G. C. Fox, J. J. Dongarra, 'Distributed and Cloud Computing', Book,
 Online: http://store.elsevier.com/product.jsp?locale=en EU&isbn=9780128002049
- [22] Big Data Tips, 'What is a Tensor?',
 Online: http://www.big-data.tips/what-is-a-tensor
- [23] A. Sergeev, M. Del Balso, 'Horovod: fast and easy distributed deep learning in TensorFlow', 2018
 Online: https://arxiv.org/abs/1802.05799
- [24] DEEP-EST EU Project,
 Online: http://www.deep-projects.eu/
- [25] Putty Tool,

Online: http://www.putty.org/

- [26] LLView Tool,
 - Online: http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/LLview/ node.html
- [27] E. Erlingsson, G. Cavallaro, A. Galonska, M. Riedel, H. Neukirchen, 'Modular Supercomputing Design Supporting Machine Learning Applications', in conference proceedings of the 41st IEEE MIPRO 2018, May 21-25, 2018, Opatija, Croatia

Slides Available at http://www.morrisriedel.de/talks

