

Parallel & Scalable Machine Learning

Introduction to Machine Learning Algorithms

Prof. Dr. – Ing. Morris Riedel

Adjunct Associated Professor School of Engineering and Natural Sciences, University of Iceland Research Group Leader, Juelich Supercomputing Centre, Germany

LECTURE 10

Theory of Generalization

February 27th, 2019
Juelich Supercomputing Centre, Juelich, Germany

Review of Lecture 9 – Data Preparation & Performance Evaluation

- Real Datasets are challenging
 - High number of classes
 - High dimensional datasets
 - Unbalanced class problems
- Machine Learning
 - Not just use dataset with any kind of algorithms (e.g. ANNs)
 - Instead substantial feature selection & engineering before
 - How to choose a model given the data amount we have?

Outline of the Course

- 1. Parallel & Scalable Machine Learning driven by HPC
- 2. Introduction to Machine Learning Fundamentals
- 3. Introduction to Machine Learning Fundamentals
- 4. Feed Forward Neural Networks
- 5. Feed Forward Neural Networks
- 6. Validation and Regularization
- 7. Validation and Regularization
- 8. Data Preparation and Performance Evaluation
- 9. Data Preparation and Performance Evaluation
- 10. Theory of Generalization
- 11. Unsupervised Clustering and Applications
- 12. Unsupervised Clustering and Applications
- 13. Deep Learning Introduction

Theoretical Lectures

Practical Lectures

Outline

Outline

- Generalization in Supervised Learning
 - Formalization of Machine Learning
 - Mathematical Building Blocks & Linear Model Example
 - Feasibility of Learning & Degrees of Freedom
 - Hypothesis Set & Final Hypothesis
 - Learning Models & Validation Dependencies
- Learning Theory Basics
 - Union Bound & Problematic Factor M
 - Theory of Generalization
 - Linear Perceptron Example in Context
 - Model Complexity & VC Dimension
 - Problem of Overfitting

Generalization in Supervised Learning

AUDIENCE QUESTION

What means generalization and why it is important?

Supervised Learning & Generalization for New/Unseen Data

Learning Approaches – Supervised Learning – Formalization

- Each observation of the predictor measurement(s) has an associated response measurement:
 - Input $\mathbf{x} = x_1, ..., x_d$
 - Output $y_i, i = 1, ..., n$
 - $\bullet \quad \mathsf{Data} \quad (\mathbf{x}_{\scriptscriptstyle 1}, y_{\scriptscriptstyle 1}), ..., (\mathbf{x}_{\scriptscriptstyle N}, y_{\scriptscriptstyle N})$

(historical records, groundtruth data, examples)

- Goal: Fit a model that relates the response to the predictors
 - Prediction: Aims of accurately predicting the response for future observations
 - Inference: Aims to better understanding the relationship between the response and the predictors
- Supervised learning approaches fits a model that related the response to the predictors
- Supervised learning approaches are used in classification algorithms such as SVMs
- Supervised learning works with data = [input, correct output]

Feasibility of Learning

Statistical Learning Theory deals with the problem of finding a predictive function based on data

[2] Wikipedia on 'statistical learning theory'

- Theoretical framework underlying practical learning algorithms
 - E.g. Support Vector Machines (SVMs)
 - Best understood for 'Supervised Learning'
- Theoretical background used to solve 'A learning problem'
 - Inferring one 'target function' that maps between input and output
 - Learned function can be used to predict output from future input (fitting existing data is not enough)

Unknown Target Function $f:X\to Y$

(ideal function)

Terminologies & Different Dataset Elements

- Target Function $f: X \to Y$
 - Ideal function that 'explains' the data we want to learn
- Labelled Dataset (samples)
 - 'in-sample' data given to us: $(\mathbf{x}_1,y_1),...,(\mathbf{x}_N,y_N)$
- Learning vs. Memorizing
 - The goal is to create a system that works well 'out of sample'
 - In other words we want to classify 'future data' (ouf of sample) correct
- Dataset Part One: Training set
 - Used for training a machine learning algorithms
 - Result after using a training set: a trained system
- Dataset Part Two: Test set
 - Used for testing whether the trained system might work well
 - Result after using a test set: accuracy of the trained model

Exercises – Explore Testing on Training Dataset

Learning exercise to understand better the theory of generalization – don't do this in practice!


```
# model evaluation
score = model.evaluate(X_train, Y_train, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])
```

MNIST Data – Testing on Training Dataset – Solution

Memorizing vs.Generalization

```
[====>.....] - ETA: 1s
1552/60000
       [====>.....] - ETA: 1s
L2960/60000
         ===>...... - ETA: 1s
L4400/60000
       L5840/60000
       17280/60000
           =>.....] - ETA: 1s
18752/60000
       ======>..... - ETA: 1s
20192/60000
       21632/60000
            =>..... - ETA: 1s
23072/60000
       =======>...... - ETA: 1s
24512/60000
       25952/60000
             27392/60000
       28832/60000
               =>.....] - <u>ETA: 1</u>s
30272/60000
       ======== - ..... - ETA: 1s
            31712/60000
33152/60000
               34592/60000
       =========>.....] - ETA: 0s
36032/60000
                 37472/60000
38912/60000
            ========>......] - ETA: 0s
         40352/60000
41792/60000
                  43232/60000
44672/60000
            ==========>.....] - ETA: 0s
16080/60000
7520/60000
48768/60000
50208/60000
51648/60000
3088/60000
54528/60000
55968/60000
57408/60000
60000/60000
Ising TensorFlow backend.
est score: 0.035654142725043254
est accuracy: 0.9916
```

Mathematical Building Blocks (1)

Mathematical Building Blocks (1) – Our Linear Example

(historical records, groundtruth data, examples)

- 1. Some pattern exists
- 2. No exact mathematical formula (i.e. target function)
- 3. Data exists

(if we would know the exact target function we dont need machine learning, it would not make sense)

Feasibility of Learning – Hypothesis Set & Final Hypothesis

 The 'ideal function' will remain unknown in learning

- Impossible to know and learn from data
- If known a straightforward implementation would be better than learning
- E.g. hidden features/attributes of data not known or not part of data
- But '(function) approximation' of the target function is possible
 - Use training examples to learn and approximate it
 - Hypothesis set \mathcal{H} consists of m different hypothesis (candidate functions)

$$\mathcal{H} = \{h_1, ..., h_m\};$$

'select one function' that best approximates $g:X\to Y$

 $\mathcal{H} = \{h\}; \; g \in \mathcal{H}$

Final Hypothesis gpprox f

Mathematical Building Blocks (2)

Final Hypothesis gpprox f

Elements that we derive from our skillset and that can be computationally intensive

$$\mathcal{H}=\{h\};\;g\in\mathcal{H}$$

(set of candidate formulas)

Elements that we derive from our skillset

Mathematical Building Blocks (2) – Our Linear Example

(decision boundaries depending on f)

$$\mathcal{H} = \{h\}; \; g \in \mathcal{H}$$

(Perceptron model – linear model)

(trained perceptron model and our selected final hypothesis)

The Learning Model: Hypothesis Set & Learning Algorithm

- The solution tools the learning model:
 - 1. Hypothesis set \mathcal{H} a set of candidate formulas /models
 - 2. Learning Algorithm \mathcal{A} 'train a system' with known algorithms

Mathematical Building Blocks (3)

Mathematical Building Blocks (3) – Our Linear Example

Different Models - Hypothesis Set & 'Degrees of Freedom'

$$\mathcal{H} = \{h\}; \; g \in \mathcal{H}$$

$$\mathcal{H} = \{h_1, ..., h_m\};$$

(all candidate functions derived from models and their parameters)

- Choosing from various model approaches h₁, ...,
 h_m is a different hypothesis
- Additionally a change in model parameters of h₁, ..., h_m means a different hypothesis too

'select one function' that best approximates

Final Hypothesis
$$gpprox f$$

 h_1

(e.g. support vector machine model)

 h_2

(e.g. linear perceptron model)

 h_m

(e.g. artificial neural network model)

Validation Technique – Model Selection Process – Revisited

- Model selection is choosing (a) different types of models or (b) parameter values inside models
- Model selection takes advantage of the validation error in order to decide → 'pick the best'

(set of candidate formulas across models)

- Many different models
 Use validation error to
 perform select decisions
- Careful consideration:
 - Picked means decided' hypothesis has already bias (→ contamination)
 - Using \mathcal{D}_{Val} M times

Final Hypothesis

 $g_{m*} \approx f$

[Video] Towards Multi-Layer Perceptrons

[3] YouTube Video, Neural Networks – A Simple Explanation

Learning Theory Basics

Feasibility of Learning – Probability Distribution

- Predict output from future input (fitting existing data is not enough)
 - In-sample '1000 points' fit well
 - Possible: Out-of-sample >= '1001 point' doesn't fit very well
 - Learning 'any target function' is not feasible (can be anything)
- Assumptions about 'future input'
 - Statement is possible to define about the data outside the in-sample data $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$ $\mathbf{x} = (x_1, ..., x_d)$ $\mathbf{x} = (x_1, ..., x_d)$
 - All samples (also future ones) are derived from same 'unknown probability' distribution $P\ on\ X$

Unknown Target Function $f:X\to Y$ Training Examples $(\mathbf{x}_1,y_1),...,(\mathbf{x}_N,y_N)$

Statistical Learning Theory assumes an unknown probability distribution over the input space X

Feasibility of Learning – In Sample vs. Out of Sample

- Given 'unknown' probability P on X
 - Given large sample N for $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$
 - There is a probability of 'picking one point or another'
 - 'Error on in sample' is known quantity (using labelled data): $E_{in}(h)$
 - 'Error on out of sample' is unknown quantity: $E_{out}(h)$
 - In-sample frequency is likely close to out-of-sample frequency E_{in} tracks E_{out}

Statistical Learning Theory part that enables that learning is feasible in a probabilistic sense (P on X)

Feasibility of Learning – Union Bound & Factor M

- The union bound means that (for any countable set of m 'events') the probability that at least one of the events happens is not greater that the sum of the probabilities of the m individual 'events'
 - Assuming no overlaps in hypothesis set
 - Apply mathematical rule 'union bound'
 - (Note the usage of g instead of h, we need to visit all)

Final Hypothesis $q \approx f$

Think if E_{in} deviates from E_{out} with more than tolerance E it is a 'bad event' in order to apply union bound

$$\Pr\left[\mid E_{in}(g) - E_{out}(g)\mid > \epsilon \right] <= \Pr\left[\mid E_{in}(h_1) - E_{out}(h_1)\mid > \epsilon \right]$$
 or
$$\left|E_{in}(h_2) - E_{out}(h_2)\mid > \epsilon \right]$$
 or
$$\left|E_{in}(h_M) - E_{out}(h_M)\mid > \epsilon \right]$$
 or
$$\left|E_{in}(h_M) - E_{out}(h_M)\mid > \epsilon \right]$$
 Pr
$$\left[\mid E_{in}(g) - E_{out}(g)\mid > \epsilon \right] <= \sum_{m=1}^{M} \Pr\left[\mid E_{in}(h_m) - E_{out}(h_m)\mid > \epsilon \right]$$
 fixed quantity for each hypothesis obtained from Hoeffdings Inequality
$$\Pr\left[\mid E_{in}(g) - E_{out}(g)\mid > \epsilon \right] <= \sum_{m=1}^{M} 2e^{-2\epsilon^2 N}$$
 problematic: if M is too big we loose the link between the in-sample and out-of-sample

Feasibility of Learning – Modified Hoeffding's Inequality

- lacktriangle Errors in-sample $E_{in}(g)$ track errors out-of-sample $E_{out}(g)$
 - Statement is made being 'Probably Approximately Correct (PAC)'
 - Given M as number of hypothesis of hypothesis set \mathcal{H} (Tolerance parameter in learning ϵ [4] Valiant, A Theory of the Learnable, 1984
 - Mathematically established via 'modified Hoeffdings Inequality':

(original Hoeffdings Inequality doesn't apply to multiple hypothesis)

$$\Pr\left[\mid E_{in}(g) - E_{out}(g)\mid > \epsilon \right] <= 2Me^{-2\epsilon^2N}$$

'Probability that E_{in} deviates from E_{out} by more than the tolerance E is a small quantity depending on M and N'

- Theoretical 'Big Data' Impact → more N → better learning
 - lacksquare The more samples N the more reliable will track $\,E_{in}(g)\,E_{out}(g)\,$ well
 - (But: the 'quality of samples' also matter, not only the number of samples)
- Statistical Learning Theory part describing the Probably Approximately Correct (PAC) learning

Exercises – Explore Train on Test & Test on Train

Learning exercise to understand better the theory of generalization – don't do this in practice!


```
# model training
history = model.fit(X_test, Y_test, batch_size=BATCH_SIZE, epochs=NB_EPOCH, verbose=VERBOSE, validation_split = VAL_SPLIT)
# model evaluation
score = model.evaluate(X_train, Y_train, verbose=VERBOSE)
print("Test score:", score[0])
print('Test accuracy:', score[1])
```

MNIST Data – Testing on Training Dataset (20 Epochs)

- Testing Dataset 10000 samples now training
- Training Data 60000 samples now testing
- Number N
 affects training
 performance
 (was ~98%,
 Epochs constant)

```
26176/60000
27584/60000
28960/60000
30336/60000
31712/60000
33056/60000
34432/60000
35808/60000
37184/60000
38528/60000
39936/60000
41344/60000
42784/60000
44192/60000
45600/60000
47008/60000
48416/60000
49824/60000
51232/60000
52608/60000
54016/60000
55424/60000
56864/60000
58272/60000
59680/60000
                                               - ETA: 0s
60000/60000
Using TensorFlow backend.
Test score: 0.2172071209657685
Test accuracy: 0.94875
```

$$\Pr [| E_{in}(g) - E_{out}(g) | > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

MNIST Data – Testing on Training Dataset (200 Epochs)

- Testing Dataset 10000 samples now training
- Training Data 60000 samples now testing
- Number N
 affects training
 performance
 (was ~98%,
 Epochs 200)

$$\Pr [| E_{in}(g) - E_{out}(g) | > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

MNIST Data – Testing on Training Dataset (400 Epochs)

- Testing Dataset 10000 samples now training
- Training Data 60000 samples now testing
- Number N
 affects training
 performance
 (was ~98%,
 Epochs 400)

```
- ETA: 1s
          17312/60000
         ======> ..... - ETA: 1s
                28672/60000
         30112/60000
34400/60000
35808/60000
40096/60000
41536/60000
12944/60000
44384/60000
45824/60000
47232/60000
50112/60000
51552/60000
52960/60000
55808/60000
57216/60000
Using TensorFlow backend.
Test score: 0.46486433204362193
Test accuracy: 0.9536333333333333
```

$$\Pr [| E_{in}(g) - E_{out}(g) | > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

MNIST Data – Testing on Training Dataset (800 Epochs)

- Testing Dataset 10000 samples now training
- Training Data 60000 samples now testing
- Number N
 affects training
 performance
 (was ~98%,
 Epochs 800)

```
poch 800/800

128/8000 [......] - ETA: 0s - loss: 0.0126 - acc: 0.9922

048/8000 [=====>....] - ETA: 0s - loss: 0.0106 - acc: 0.9980

968/8000 [======>....] - ETA: 0s - loss: 0.0148 - acc: 0.9972

888/8000 [==========>....] - ETA: 0s - loss: 0.0140 - acc: 0.9976

808/8000 [============].] - ETA: 0s - loss: 0.0111 - acc: 0.9980

000/8000 [==============] - 0s 30us/step - loss: 0.0108 - acc: 0.9980 - val_loss: 0.2866 - val_acc: 0.9725
```

$$\Pr [| E_{in}(g) - E_{out}(g) | > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

Mathematical Building Blocks (4)

Mathematical Building Blocks (4) – Our Linear Example

Is this point very likely from the same distribution or just noise?

(we help here with the assumption for the samples)

(we do not solve the M problem here)

$$\Pr [| E_{in}(g) - E_{out}(g) | > \epsilon] \le 2Me^{-2\epsilon^2 N}$$

(counter example would be for instance a random number generator, impossible to learn this!)

Statistical Learning Theory – Error Measure & Noisy Targets

- Question: How can we learn a function from (noisy) data?
- 'Error measures' to quantify our progress, the goal is: $h \approx f$
 - Often user-defined, if not often 'squared error':

$$e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) - f(\mathbf{x}))^2$$

- E.g. 'point-wise error measure'
- (e.g. think movie rated now and in 10 years from now)
- '(Noisy) Target function' is not a (deterministic) function
 - Getting with 'same x in' the 'same y out' is not always given in practice
 - Problem: 'Noise' in the data that hinders us from learning
 - Idea: Use a 'target distribution' instead of 'target function'
 - E.g. credit approval (yes/no)

Statistical Learning Theory refines the learning problem of learning an unknown target distribution

Mathematical Building Blocks (5)

Mathematical Building Blocks (5) – Our Linear Example

■ Iterative Method using (labelled) training data $(\mathbf{x}_1, y_1), ..., (\mathbf{x}_N, y_N)$

(one point at a time is picked)

1. Pick one misclassified training point where:

$$sign(\mathbf{w}^T\mathbf{x}_n) \neq y_n$$

(a)

2. Update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

 $(y_n \text{ is either } +1 \text{ or } -1)$

- (a) adding a vector or
- (b) subtracting a vector

$$y = -1$$

 Terminates when there are no misclassified points

(converges only with linearly seperable data)

Training and Testing – Influence on Learning

Mathematical notations

- Testing follows: $\Pr\left[\mid E_{in}(g) E_{out}(g)\mid > \epsilon \right] <= 2 e^{-2\epsilon^2 N}$ (hypothesis clear)
- Training follows: $\Pr\left[\mid E_{in}(g) E_{out}(g)\mid > \epsilon \right] <= 2Me^{-2\epsilon^2N}$ (hypothesis search) (e.g. student exam training on examples to get E_{in} , down', then test via exam)
- Practice on 'training examples'
 - Create two disjoint datasets
 - One used for training only (aka training set)
 - Another used for testing only (aka test set)

(historical records, groundtruth data, examples)

- Training & Testing are different phases in the learning process
 - Concrete number of samples in each set often influences learning

Theory of Generalization – Initial Generalization & Limits

- Learning is feasible in a probabilistic sense
 - $\,\blacksquare\,$ Reported final hypothesis using a 'generalization window' on $E_{out}(g)$
 - Expecting 'out of sample performance' tracks 'in sample performance'
 - \blacksquare Approach: $E_{in}(g)$ acts as a 'proxy' for $E_{out}(g)$

$$E_{out}(g) \approx E_{in}(g)$$

This is not full learning – rather 'good generalization' since the quantity E_{out}(g) is an unknown quantity

Reasoning

Above condition is not the final hypothesis condition:

Final Hypothesis gpprox f

- More similar like $E_{out}(g)$ approximates 0 (out of sample error is close to 0 if approximating f)
- ullet $E_{out}(g)$ measures how far away the value is from the 'target function'
- Problematic because $E_{out}(g)$ is an unknown quantity (cannot be used...)
- The learning process thus requires 'two general core building blocks'

Theory of Generalization – Learning Process Reviewed

- 'Learning Well'
 - lacktriangle Two core building blocks that achieve $E_{out}(g)$ approximates 0
- First core building block
 - \bullet Theoretical result using Hoeffdings Inequality $\;E_{out}(g)\approx E_{in}(g)\;$
 - Using $E_{out}(g)$ directly is not possible it is an unknown quantity
- Second core building block

(try to get the 'in-sample' error lower)

- $\,\blacksquare\,$ Practical result using tools & techniques to get $\,E_{in}(g)\approx 0\,$
- e.g. linear models with the Perceptron Learning Algorithm (PLA)
- Using $E_{in}(g)$ is possible it is a known quantity 'so lets get it small'
- Lessons learned from practice: in many situations 'close to 0' impossible
- E.g. remote sensing images use case of land cover classification
- Full learning means that we can make sure that E_{out}(g) is close enough to E_{in}(g) [from theory]
- Full learning means that we can make sure that E_{in}(g) is small enough [from practical techniques]

Complexity of the Hypothesis Set – Infinite Spaces Problem

$$\Pr \left[| E_{in}(g) - E_{out}(g) | > \epsilon \right] <= 2Me^{-2\epsilon^2 N}$$

theory helps to find a way to deal with infinite M hypothesis spaces

- Tradeoff & Review
 - Tradeoff between €, M, and the 'complexity of the hypothesis space H'
 - Contribution of detailed learning theory is to 'understand factor M'
- lacktriangle M Elements of the hypothesis set ${\mathcal H}_{\mathsf{M}}$ M elements in H here
 - Ok if N gets big, but problematic if M gets big → bound gets meaningless
 - E.g. classification models like perceptron, support vector machines, etc.
 - Challenge: those classification models have continous parameters
 - Consequence: those classification models have infinite hypothesis spaces
 - Aproach: despite their size, the models still have limited expressive power
- Many elements of the hypothesis set H have continous parameter with infinite M hypothesis spaces

Factor M from the Union Bound & Hypothesis Overlaps

$$\Pr\left[\mid E_{in}(g) - E_{out}(g) \mid > \epsilon \right] <= \Pr\left[\mid E_{in}(h_1) - E_{out}(h_1) \mid > \epsilon \right. \qquad \text{assumes no overlaps, all probabilities} \\ \text{or} \quad \mid E_{in}(h_2) - E_{out}(h_2) \mid > \epsilon \quad \dots \quad \text{happen disjointly}$$

$$\Pr\left[\mid E_{in}(g) - E_{out}(g) \mid > \epsilon \; \right] <= \; 2Me^{-2\epsilon^2N}$$
 takes no overlaps of **M** hypothesis into account

- Union bound is a 'poor bound', ignores correlation between h
 - Overlaps are common: <u>the interest is shifted to data points</u> changing label

$$\mid E_{in}(h_1) - E_{out}(h_1) \mid \approx \quad \mid E_{in}(h_2) - E_{out}(h_2) \mid \quad \text{(at least very often, indicator to reduce M)}$$

Statistical Learning Theory provides a quantity able to characterize the overlaps for a better bound

Replacing M & Large Overlaps

(Hoeffding Inequality)

(valid for 1 hypothesis)

(Union Bound)

(valid for M hypothesis, worst case)

(towards Vapnik Chervonenkis Bound)

(valid for m (N) as growth function)

- Characterizing the overlaps is the idea of a 'growth function'
 - Number of dichotomies: $\mathbf{m}_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)|$ Number of hypothesis but on finite number N of points
 - Much redundancy: Many hypothesis will reports the same dichotomies
- The mathematical proofs that m_H(N) can replace M is a key part of the theory of generalization

Complexity of the Hypothesis Set – VC Inequality

$$\Pr\left[\mid E_{in}(g) - E_{out}(g) \mid > \epsilon \right] <= 2Me^{-2\epsilon^2 N}$$

$$\mathbf{m}_{\mathcal{H}}(N) = \max_{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N} |\mathcal{H}(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)|$$

- Vapnik-Chervonenkis (VC) Inequality
 - Result of mathematical proof when replacing M with growth function m
 - 2N of growth function to have another sample (2 x $E_{in}(h)$, no $E_{out}(h)$)

$$\Pr\left[\mid E_{in}(g) - E_{out}(g) \mid > \epsilon \right] <= 4m_{\mathcal{H}}(2N)e^{-1/8\epsilon^2N}$$
(characterization of generalization)

- In Short finally: We are able to learn and can generalize 'ouf-of-sample'
- The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
- The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
- The growth function is dependent on the amount of data N that we have in a learning problem

Complexity of the Hypothesis Set – VC Dimension

- Vapnik-Chervonenkis (VC) Dimension over instance space X
 - VC dimension gets a 'generalization bound' on all possible target functions

Issue: unknown to 'compute' - VC solved this using the growth function on different samples

- Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension d_{VC}
- Ignoring the model complexity d_{VC} leads to situations where E_{in}(g) gets down and E_{out}(g) gets up

Different Models – Hypothesis Set & Model Capacity

$$\mathcal{H}=\{h\};\,\,g\in\mathcal{H}$$

$$\mathcal{H} = \{h_1, ..., h_m\};$$

(all candidate functions derived from models and their parameters)

- Choosing from various model approaches h₁, ...,
 h_m is a different hypothesis
- Additionally a change in model parameters of h₁, ..., h_m means a different hypothesis too
- The model capacity characterized by the VC
 Dimension helps in choosing models
- Occam's Razor rule of thumb: 'simpler model better' in any learning problem, not too simple!

'select one function' that best approximates

Final Hypothesis
$$gpprox f$$

 h_1

(e.g. support vector machine model)

 h_2

 h_{m}

(representing the threshold)

(e.g. linear perceptron model)

(e.g. artificial neural network model)

Validation Technique – Model Selection Process – Revisited

- Model selection is choosing (a) different types of models or (b) parameter values inside models
- Model selection takes advantage of the validation error in order to decide → 'pick the best'

$$\mathcal{H}=\{h\};\;g\in\mathcal{H}$$

(set of candidate formulas across models)

- Many different models
 Use validation error to
 perform select decisions
- Careful consideration:
 - Picked means decided' hypothesis has already bias (→ contamination)
 - Using \mathcal{D}_{Val} M times

AUDIENCE QUESTION

What could happen to Overfitting and we try to stop it?

Prevent Overfitting for better 'ouf-of-sample' generalization

[5] Stop Overfitting, YouTube

Appendix A – SSH Commands JURECA

Appendix A – SSH Commands JURECA

- salloc --gres=gpu:4 --partition=gpus --nodes=1 -account=training1904 --time=00:30:00 -reservation=prace_ml_gpus_tue
- module --force purge; module use /usr/local/software/jureca/OtherStages module load Stages/Devel-2018b GCCcore/.7.3.0 module load TensorFlow/1.12.0-GPU-Python-3.6.6 module load Keras/2.2.4-GPU-Python-3.6.6
- srun python PYTHONSCRIPTNAME

Lecture Bibliography

Lecture Bibliography

[1] An Introduction to Statistical Learning with Applications in R,

Online: http://www-bcf.usc.edu/~gareth/ISL/index.html

[2] Wikipedia on 'Statistical Learning Theory',
 Online: http://en.wikipedia.org/wiki/Statistical learning theory

[3] YouTube Video, 'Decision Trees',

Online: http://www.youtube.com/watch?v=DCTUtPJn42s

[4] Leslie G. Valiant, 'A Theory of the Learnable', Communications of the ACM 27(11):1134–1142, 1984, Online: https://people.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf

[5] Udacity, 'Overfitting',

Online: https://www.youtube.com/watch?v=CxAxRCv9WoA

Acknowledgements and more Information: Yaser Abu-Mostafa, Caltech Lecture series, YouTube

Slides Available at http://www.morrisriedel.de/teaching

