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Review of Lecture 9 – Data Preparation & Performance Evaluation

Lecture 10 – Theory of Generalization

 Real Datasets are challenging
 High number of classes
 High dimensional datasets
 Unbalanced class problems

 Machine Learning
 Not just use dataset with any

kind of algorithms (e.g. ANNs)
 Instead substantial feature 

selection & engineering before
 How to choose a model given

the data amount we have?
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Outline of the Course

1. Parallel & Scalable Machine Learning driven by HPC

2. Introduction to Machine Learning Fundamentals

3. Introduction to Machine Learning Fundamentals

4. Feed Forward Neural Networks

5. Feed Forward Neural Networks

6. Validation and Regularization

7. Validation and Regularization

8. Data Preparation and Performance Evaluation

9. Data Preparation and Performance Evaluation

10. Theory of Generalization

11. Unsupervised Clustering and Applications

12. Unsupervised Clustering and Applications

13. Deep Learning Introduction
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Theoretical Lectures

Practical Lectures
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Outline
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Outline

 Generalization in Supervised Learning
 Formalization of Machine Learning
 Mathematical Building Blocks & Linear Model Example
 Feasibility of Learning & Degrees of Freedom
 Hypothesis Set & Final Hypothesis
 Learning Models & Validation Dependencies

 Learning Theory Basics
 Union Bound & Problematic Factor M
 Theory of Generalization
 Linear Perceptron Example in Context
 Model Complexity & VC Dimension
 Problem of Overfitting
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Generalization in Supervised Learning
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AUDIENCE QUESTION

What means generalization and why it is important?
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Supervised Learning & Generalization for New/Unseen Data

Lecture 10 – Theory of Generalization
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 Example of a very 
simple linear 
supervised 
learning model:
The Perceptron

(N = 100 samples)
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Lecture 10 – Theory of Generalization

Learning Approaches – Supervised Learning – Formalization 

 Each observation of the predictor measurement(s)
has an associated response measurement:
 Input
 Output
 Data

 Goal: Fit a model that relates the response to the predictors
 Prediction: Aims of accurately predicting the response for future 

observations
 Inference: Aims to better understanding the relationship between the 

response and the predictors

 Supervised learning approaches fits a model that related the response to the predictors
 Supervised learning approaches are used in classification algorithms such as SVMs
 Supervised learning works with data = [input, correct output]

[1] An Introduction to Statistical Learning

Training Examples

(historical records, groundtruth data, examples)
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Lecture 10 – Theory of Generalization

Feasibility of Learning

 Theoretical framework underlying practical learning algorithms
 E.g. Support Vector Machines (SVMs)
 Best understood for ‘Supervised Learning‘

 Theoretical background used to solve ‘A learning problem‘
 Inferring one ‘target function‘ that maps 

between input and output
 Learned function can be used to 

predict output from future input
(fitting existing data is not enough)

 Statistical Learning Theory deals with the problem of finding a predictive function based on data

[2] Wikipedia on ‘statistical learning theory’

Unknown Target Function

(ideal function)
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Lecture 10 – Theory of Generalization

Terminologies & Different Dataset Elements

 Target Function
 Ideal function that ‘explains‘ the data we want to learn

 Labelled Dataset (samples)
 ‘in-sample‘ data given to us: 

 Learning vs. Memorizing
 The goal is to create a system that works well ‘out of sample‘ 
 In other words we want to classify ‘future data‘ (ouf of sample) correct

 Dataset Part One: Training set
 Used for training a machine learning algorithms
 Result after using a training set: a trained system

 Dataset Part Two: Test set
 Used for testing whether the trained system might work well 
 Result after using a test set: accuracy of the trained model
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Exercises – Explore Testing on Training Dataset

Lecture 10 – Theory of Generalization

 Learning exercise to understand better the theory of generalization – don‘t do this in practice!

12 / 56



MNIST Data – Testing on Training Dataset – Solution 

 Memorizing vs. 
Generalization
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Lecture 10 – Theory of Generalization

Mathematical Building Blocks (1)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)
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Mathematical Building Blocks (1) – Our Linear Example 

Lecture 10 – Theory of Generalization

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

(decision boundaries depending on f)

Iris-virginica if

Iris-setosa if

(wi and threshold are
still unknown to us)

1. Some pattern exists
2. No exact mathematical 

formula (i.e. target function)
3. Data exists

(if we would know the exact target function we dont need 
machine learning, it would not make sense)

(we search a 
function similiar 
like a target function)
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Lecture 10 – Theory of Generalization

Feasibility of Learning – Hypothesis Set & Final Hypothesis

 The ‘ideal function‘ will
remain unknown in learning
 Impossible to know and learn from data
 If known a straightforward implementation would be better than learning
 E.g. hidden features/attributes of data not known or not part of data

 But ‘(function) approximation‘ of the target function is possible
 Use training examples to learn and approximate it
 Hypothesis set        consists of m different hypothesis (candidate functions)

Unknown Target Function

Final HypothesisHypothesis Set

‘select one function‘
that best approximates
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Lecture 10 – Theory of Generalization

Mathematical Building Blocks (2)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(set of candidate formulas)

Hypothesis Set
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Mathematical Building Blocks (2) – Our Linear Example

Lecture 10 – Theory of Generalization

(Perceptron model – linear model)

Hypothesis Set

Final Hypothesis

(decision boundaries depending on f)

(we search a function similiar 
like a target function)

(trained perceptron model
and our selected final hypothesis)
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Lecture 10 – Theory of Generalization

The Learning Model: Hypothesis Set & Learning Algorithm

 The solution tools – the learning model:
1. Hypothesis set - a set of candidate formulas /models
2. Learning Algorithm - ‘train a system‘ with known algorithms

Final HypothesisLearning Algorithm (‘train a system‘)

Hypothesis Set

Training Examples

 Our Linear Example
1. Perceptron Model
2. Perceptron Learning

Algorithm (PLA)‘solution tools‘
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Mathematical Building Blocks (3)

Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)
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Mathematical Building Blocks (3) – Our Linear Example

Lecture 10 – Theory of Generalization

Unknown Target Function

(ideal function)

Training Examples

(historical records, groundtruth data, examples)

Final Hypothesis

(Perceptron model – linear model)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(Perceptron Learning Algorithm)

(trained perceptron model
and our selected final hypothesis)

(training data)

(training phase;
Find wi and threshold 
that fit the data)(algorithm uses 

training dataset)
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Different Models – Hypothesis Set & ‘Degrees of Freedom‘

Hypothesis Set

(all candidate functions
derived from models 
and their parameters)

(e.g. support vector machine model)

(e.g. linear perceptron model)

Final Hypothesis

‘select one function‘
that best approximates

 Choosing from various model approaches h1, …, 
hm is a different hypothesis

 Additionally a change in model parameters of 
h1, …, hm means a different hypothesis too

(e.g. artificial neural network model)
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Lecture 10 – Theory of Generalization

Validation Technique – Model Selection Process – Revisited 

 Many different models
Use validation error to 
perform select decisions 

 Careful consideration:
 ‘Picked means decided‘

hypothesis has already
bias ( contamination)

 Using            M times

 Model selection is choosing (a) different types of models or (b) parameter values inside models
 Model selection takes advantage of the validation error in order to decide  ‘pick the best‘

(set of candidate formulas across models)

Hypothesis Set

(pick ‘best‘  bias)

(final real training
to get even better
out-of-sample)

(training)

(validate)

(final training on full set, use
the validation samples too)

(out-of-sample
w.r.t. DTrain)

(training not on
full data set)

(decides model selection)

Final Hypothesis (test this on unseen data
good, but depends on 
availability in practice)

(unbiased
estimates)
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[Video] Towards Multi-Layer Perceptrons

Lecture 10 – Theory of Generalization

[3] YouTube Video, Neural Networks – A Simple Explanation
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Learning Theory Basics

Lecture 10 – Theory of Generalization 25 / 56



Lecture 10 – Theory of Generalization

Feasibility of Learning – Probability Distribution

 Predict output from future input 
(fitting existing data is not enough)
 In-sample ‘1000 points‘ fit well
 Possible: Out-of-sample >= ‘1001 point‘ 

doesn‘t fit very well
 Learning ‘any target function‘

is not feasible (can be anything)

 Assumptions about ‘future input‘
 Statement is possible to 

define about the data outside 
the in-sample data 

 All samples (also future ones) are 
derived from same ‘unknown probability‘ distribution

Unknown Target Function

Training Examples

 Statistical Learning Theory assumes an unknown probability distribution over the input space X

Probability Distribution

(which exact
probability

is not important,
but should not be

completely 
random)
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Lecture 10 – Theory of Generalization

Feasibility of Learning – In Sample vs. Out of Sample 

 Given ‘unknown‘ probability 
 Given large sample N for
 There is a probability of ‘picking one point or another‘
 ‘Error on in sample‘ is known quantity (using labelled data):
 ‘Error on out of sample‘ is unknown quantity:
 In-sample frequency is likely close to out-of-sample frequency

‘in sample‘

‘out of sample‘

use for predict!

 Statistical Learning Theory part that enables that learning is feasible in a probabilistic sense (P on X) 

use Ein(h) as a proxy thus the other 
way around in learning

depend on 
which

hypothesis h 
out of M

different ones

Ein tracks Eout
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Lecture 10 – Theory of Generalization

Feasibility of Learning – Union Bound & Factor M

 Assuming no overlaps in hypothesis set 
 Apply mathematical rule ‘union bound‘ 
 (Note the usage of g instead of h, we need to visit all)

Final Hypothesis

 The union bound means that (for any countable set of m ‘events‘) the probability that at least one 
of the events happens is not greater that the sum of the probabilities of the m individual ‘events‘

or
or

...

fixed quantity for each hypothesis
obtained from Hoeffdings Inequality

problematic: if M is too big we loose the link
between the in-sample and out-of-sample

‘visiting M
different
hypothesis‘

Think if Ein deviates from Eout with more than tolerance Є it is a ‘bad event‘ in order to apply union bound

28 / 56



Lecture 10 – Theory of Generalization

Feasibility of Learning – Modified Hoeffding‘s Inequality

 Errors in-sample                 track errors out-of-sample
 Statement is made being ‘Probably Approximately Correct (PAC)‘
 Given M as number of hypothesis  of hypothesis set 
 ‘Tolerance parameter‘ in learning 
 Mathematically established via ‘modified Hoeffdings Inequality‘:

(original Hoeffdings Inequality doesn‘t apply to multiple hypothesis)

 Theoretical ‘Big Data‘ Impact more N better learning
 The more samples N the more reliable will track                                    well
 (But: the ‘quality of samples‘ also matter, not only the number of samples)

 Statistical Learning Theory part describing the Probably Approximately Correct (PAC) learning

‘Probability that Ein deviates from Eout by more than the tolerance Є is a small quantity depending on M and N‘

‘Probably‘‘Approximately‘

[4] Valiant, ‘A Theory
of the Learnable’, 1984
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Exercises – Explore Train on Test & Test on Train

Lecture 10 – Theory of Generalization

 Learning exercise to understand better the theory of generalization – don‘t do this in practice!
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MNIST Data – Testing on Training Dataset (20 Epochs)

 Testing Dataset
10000 samples
now training

 Training Data
60000 samples
now testing

 Number N
affects training
performance
(was ~98%,
Epochs constant)
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MNIST Data – Testing on Training Dataset (200 Epochs)

 Testing Dataset
10000 samples
now training

 Training Data
60000 samples
now testing

 Number N
affects training
performance
(was ~98%,
Epochs 200)
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MNIST Data – Testing on Training Dataset (400 Epochs)

 Testing Dataset
10000 samples
now training

 Training Data
60000 samples
now testing

 Number N
affects training
performance
(was ~98%,
Epochs 400)
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MNIST Data – Testing on Training Dataset (800 Epochs)

 Testing Dataset
10000 samples
now training

 Training Data
60000 samples
now testing

 Number N
affects training
performance
(was ~98%,
Epochs 800)
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Lecture 10 – Theory of Generalization

Mathematical Building Blocks (4)

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

(ideal function)

(historical records, groundtruth data, examples)

‘constants‘ 
in learning

Probability Distribution

Training Examples

Final Hypothesis

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)
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Mathematical Building Blocks (4) – Our Linear Example

Lecture 10 – Theory of Generalization

(infinite M decision boundaries depending on f) Probability Distribution

P

Is this point very likely from the same distribution or just noise?

Is this point very likely from the same distribution or just noise?

P

(we do not solve the M problem here)(we help here with the assumption for the samples)

We assume future points are taken from the
same probability distribution as those that
we have in our training examples

Training Examples

(counter example would be for instance a random number generator, impossible to learn this!)
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Lecture 10 – Theory of Generalization

Statistical Learning Theory – Error Measure & Noisy Targets

 Question: How can we learn a function from (noisy) data?
 ‘Error measures‘ to quantify our progress, the goal is:

 Often user-defined, if not often ‘squared error‘:

 E.g. ‘point-wise error measure‘

 ‘(Noisy) Target function‘ is not a (deterministic) function
 Getting with ‘same x in‘ the ‘same y out‘ is not always given in practice
 Problem: ‘Noise‘ in the data that hinders us from learning
 Idea: Use a ‘target distribution‘

instead of ‘target function‘
 E.g. credit approval (yes/no)

Error Measure

 Statistical Learning Theory refines the learning problem of learning an unknown target distribution

(e.g. think movie rated now and in 10 years from now)
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Mathematical Building Blocks (5)

Unknown Target Function Elements we 
not exactly

(need to) know 

Elements we
must  and/or

should have and 
that might raise
huge demands 

for storage

Elements
that we derive

from our skillset
and that can be
computationally

intensive

Elements
that we 

derive from
our skillset

‘constants‘ 
in learning

Final Hypothesis

(ideal function)

(final formula)

(set of candidate formulas)

Learning Algorithm (‘train a system‘)

Hypothesis Set

(set of known algorithms)

‘constants‘ 
in learning

Probability Distribution

Error Measure

Unknown Target Distribution

target function plus noise

Training Examples

(historical records, groundtruth data, examples)
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Mathematical Building Blocks (5) – Our Linear Example

Lecture 10 – Theory of Generalization

Error Measure

 Iterative Method using (labelled) training data 

1. Pick one misclassified 
training point where:

2. Update the weight vector: 

 Terminates when there are 
no misclassified points

(a) adding a vector  or
(b) subtracting a vector

x

w + yx

w

y = +1

y = -1

x

w – yx 

w

(converges only with linearly seperable data)

(one point at a time is picked)

(a)

(b)

(yn is either +1 or -1)

Error Measure
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Lecture 10 – Theory of Generalization

Training and Testing – Influence on Learning

 Mathematical notations
 Testing follows: 

(hypothesis clear)
 Training follows:

(hypothesis search) 

 Practice on ‘training examples‘
 Create two disjoint datasets
 One used for training only

(aka training set)
 Another used for testing only

(aka test set)

 Training & Testing are different phases in the learning process
 Concrete number of samples in each set often influences learning 

(e.g. student exam training on examples to get Ein ‚down‘, then test via exam)

Training Examples

(historical records, groundtruth data, examples)
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Lecture 10 – Theory of Generalization

Theory of Generalization – Initial Generalization & Limits

 Learning is feasible in a probabilistic sense
 Reported final hypothesis – using a ‘generalization window‘ on
 Expecting ‘out of sample performance‘ tracks ‘in sample performance‘
 Approach:                acts as a ‘proxy‘ for

 Reasoning
 Above condition is not the final hypothesis condition:
 More similiar like                   approximates 0 

(out of sample error is close to 0 if approximating f)
 measures how far away the value is from the ‘target function’
 Problematic because                 is an unknown quantity (cannot be used…)
 The learning process thus requires ‘two general core building blocks‘

Final Hypothesis

This is not full learning – rather ‘good generalization‘ since the quantity Eout(g) is an unknown quantity 
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Lecture 10 – Theory of Generalization

Theory of Generalization – Learning Process Reviewed

 ‘Learning Well‘
 Two core building blocks that achieve                   approximates 0 

 First core building block
 Theoretical result using Hoeffdings Inequality
 Using                    directly is not possible – it is an unknown quantity

 Second core building block
 Practical result using tools & techniques to get
 e.g. linear models with the Perceptron Learning Algorithm (PLA)
 Using                is possible – it is a known quantity – ‘so lets get it small‘
 Lessons learned from practice: in many situations ‘close to 0‘ impossible
 E.g. remote sensing images use case of land cover classification

 Full learning means that we can make sure that Eout(g) is close enough to Ein(g) [from theory]
 Full learning means that we can make sure that Ein(g) is small enough [from practical techniques]

(try to get the ‘in-sample‘ error lower)
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Lecture 10 – Theory of Generalization

Complexity of the Hypothesis Set – Infinite Spaces Problem 

 Tradeoff & Review 
 Tradeoff between Є, M, and the ‘complexity of the hypothesis space H‘
 Contribution of detailed learning theory is to ‘understand factor M‘

 M Elements of the hypothesis set
 Ok if N gets big, but problematic if M gets big  bound gets meaningless
 E.g. classification models like perceptron, support vector machines, etc.
 Challenge: those classification models have continous parameters
 Consequence: those classification models have infinite hypothesis spaces
 Aproach: despite their size, the models still have limited expressive power

 Many elements of the hypothesis set H have continous parameter with infinite M hypothesis spaces

M elements in H here

theory helps to find a way to deal 
with infinite M hypothesis spaces
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Lecture 10 – Theory of Generalization

Factor M from the Union Bound & Hypothesis Overlaps

 Union bound is a ‘poor bound‘, ignores correlation between h
 Overlaps are common: the interest is shifted to data points changing label

or
or

...

 Statistical Learning Theory provides a quantity able to characterize the overlaps for a better bound

h1
h2 ΔEout 

ΔEout

ΔEin

change in areas change in data label

assumes no
overlaps, all 
probabilities 

happen
disjointly

takes no overlaps of M hypothesis into account

(at least very often,
indicator to reduce M)

‘unimportant‘ ‘important‘
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Lecture 10 – Theory of Generalization

Replacing M & Large Overlaps

 The mathematical proofs that mH(N) can replace M is a key part of the theory of generalization

(Hoeffding Inequality) (Union Bound) (towards Vapnik Chervonenkis Bound)

 Characterizing the overlaps is the idea of a ‘growth function‘
 Number of dichotomies:

Number of hypothesis but
on finite number N of points

 Much redundancy: Many hypothesis will reports the same dichotomies

(valid for 1 hypothesis) (valid for M hypothesis, worst case) (valid for m (N) as growth function)
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Lecture 10 – Theory of Generalization

Complexity of the Hypothesis Set – VC Inequality

 Vapnik-Chervonenkis (VC) Inequality
 Result of mathematical proof when replacing M with growth function m
 2N of growth function to have another sample ( 2 x            , no              )    

 In Short – finally : We are able to learn and can generalize ‘ouf-of-sample‘

 The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
 The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
 The growth function is dependent on the amount of data N that we have in a learning problem

(characterization of generalization)
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Complexity of the Hypothesis Set – VC Dimension 

 Vapnik-Chervonenkis (VC) Dimension over instance space X
 VC dimension gets a ‘generalization bound‘ on all possible target functions

Lecture 10 – Theory of Generalization

 Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension dVC

 Ignoring the model complexity dVC leads to situations where Ein(g) gets down and Eout(g) gets up

Error

VC dimension dVC

model
complexity

d*VC

(‘generalization error‘)

(‘training error‘)

Issue: unknown to ‘compute‘ – VC solved this using the growth function on different samples 

‘out of sample‘

‘first sample‘

‘second sample‘

idea: ‘first sample‘ frequency 
close to ‘second sample‘ frequency
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Different Models – Hypothesis Set & Model Capacity

Hypothesis Set

(all candidate functions
derived from models 
and their parameters)

(e.g. support vector machine model)

(e.g. linear perceptron model)

Final Hypothesis‘select one function‘
that best approximates

 Choosing from various model approaches h1, …, 
hm is a different hypothesis

 Additionally a change in model parameters of 
h1, …, hm means a different hypothesis too

 The model capacity characterized by the VC 
Dimension helps in choosing models

 Occam‘s Razor rule of thumb: ‘simpler model 
better‘ in any learning problem, not too simple!

(e.g. artificial neural network model)
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Lecture 10 – Theory of Generalization

Validation Technique – Model Selection Process – Revisited 

 Many different models
Use validation error to 
perform select decisions 

 Careful consideration:
 ‘Picked means decided‘

hypothesis has already
bias ( contamination)

 Using            M times

 Model selection is choosing (a) different types of models or (b) parameter values inside models
 Model selection takes advantage of the validation error in order to decide  ‘pick the best‘

(set of candidate formulas across models)

Hypothesis Set

(pick ‘best‘  bias)

(final real training
to get even better
out-of-sample)

(training)

(validate)

(final training on full set, use
the validation samples too)

(out-of-sample
w.r.t. DTrain)

(training not on
full data set)

(decides model selection)

Final Hypothesis (test this on unseen data
good, but depends on 
availability in practice)

(unbiased
estimates)
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AUDIENCE QUESTION

What could happen to Overfitting and we try to stop it?
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Prevent Overfitting for better ‘ouf-of-sample‘ generalization

Lecture 10 – Theory of Generalization

[5] Stop Overfitting, YouTube
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Appendix A – SSH Commands JURECA
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Appendix A – SSH Commands JURECA

 salloc --gres=gpu:4 --partition=gpus --nodes=1 --
account=training1904 --time=00:30:00 --
reservation=prace_ml_gpus_tue

 module --force purge;
module use /usr/local/software/jureca/OtherStages
module load Stages/Devel-2018b GCCcore/.7.3.0
module load TensorFlow/1.12.0-GPU-Python-3.6.6
module load Keras/2.2.4-GPU-Python-3.6.6

 srun python PYTHONSCRIPTNAME
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Online: https://people.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf

 [5] Udacity, ‘Overfitting‘, 
Online: https://www.youtube.com/watch?v=CxAxRCv9WoA

 Acknowledgements and more Information: Yaser Abu-Mostafa, Caltech Lecture series, YouTube
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