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Review of Lecture 9 — Data Preparation & Performance Evaluation

= Real Datasets are challenging
= High number of classes
= High dimensional datasets

= Unbalanced class problems

. . "‘;:"rr ;
" Machine Learning B
= Not just use dataset with any ._?.:1} ‘
. . | ,-.,'
kind of algorithms (e.g. ANNs) |
" |nstead substantial feature B piimpsiiiihinis i I o
selection & engineering before = =cm - T
= How to choose a model given S - S —
the data amount we have? e :ﬁ': e Dobeocci Boise Do E
_,| DATA | CHOOSE | DETERMINE | cLASSIFIER | CLASSIFIER |
COLLECTION | FEATURES MODEL 1 TRAINING EVALUATION
1 ) 1 1 |
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Outline of the Course

Parallel & Scalable Machine Learning driven by HPC

1.

2. Introduction to Machine Learning Fundamentals
3. Introduction to Machine Learning Fundamentals
4, Feed Forward Neural Networks

5. Feed Forward Neural Networks

6.  Validation and Regularization

7.  Validation and Regularization

8. Data Preparation and Performance Evaluation

9. Data Preparation and Performance Evaluation
10. Theory of Generalization

11. Unsupervised Clustering and Applications

12. Unsupervised Clustering and Applications

13. Deep Learning Introduction

Lecture 10 — Theory of Generalization

Theoretical Lectures

Practical Lectures
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Outline
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Outline

" Generalization in Supervised Learning
= Formalization of Machine Learning
= Mathematical Building Blocks & Linear Model Example
= Feasibility of Learning & Degrees of Freedom
= Hypothesis Set & Final Hypothesis
= Learning Models & Validation Dependencies

" Learning Theory Basics
= Union Bound & Problematic Factor M
= Theory of Generalization
= Linear Perceptron Example in Context
= Model Complexity & VC Dimension
= Problem of Overfitting
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Generalization in Supervised Learning

O
O 0
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AUDIENCE QUESTION

What means generalization and why it is important?

] |IEII.:|,|I||HI
5
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Supervised Learning & Generalization for New/Unseen Data

; = Example of a very
— simple linear
§ supervised
£ 25 learning model:
- The Perceptron
S
s,
©
)
)
Q
1,5 @ Iris-setosa
M Iris-virginica
1 (%05 9)5 s (Xns Uny)
(N =100 samples)
0,5
(decision boundary)
0 m . . . . . . . - petal length (in cm)
0 1 2 3 4 5 6 7 8
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Learning Approaches — Supervised Learning — Formalization

*= Each observation of the predictor measurement(s)
has an associated response measurement:

" lnput X=x,...,0

d Training Examples
u Output y.“Z — 1,..,?1 (Xlayl)v"'v(XvaN)
= Data (Xl : yl ) Yoo (XN : yN) (historical records, groundtruth data, examples)

" Goal: Fit a model that relates the response to the predictors

= Prediction: Aims of accurately predicting the response for future
observations

= |nference: Aims to better understanding the relationship between the
response and the predictors

= Supervised learning approaches fits a model that related the response to the predictors
= Supervised learning approaches are used in classification algorithms such as SVMs
= Supervised learning works with data = [input, correct output]

[1] An Introduction to Statistical Learning



Feasibility of Learning

Statistical Learning Theory deals with the problem of finding a predictive function based on data

’

[2] Wikipedia on ‘statistical learning theory

" Theoretical framework underlying practical learning algorithms

= E.g. Support Vector Machines (SVMs)
= Best understood for ‘Supervised Learning’

* Theoretical background used to solve ‘A learning problem?

= |nferring one ‘target function’ that maps

between input and output Unknown Target Function
f: X =Y

m |earned function can be used to

predict output from future input (ideal function)

(fitting existing data is not enough)
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Terminologies & Different Dataset Elements

= Target Function f: X =Y

= |deal function that ‘explains‘ the data we want to learn

= Labelled Dataset (samples)
= ‘in-sample’ data given to us: (Xl, yl), cary (XN, yN)

= |earning vs. Memorizing
= The goal is to create a system that works well ‘out of sample’
= |n other words we want to classify ‘future data‘ (ouf of sample) correct

= Dataset Part One: Training set
= Used for training a machine learning algorithms
= Result after using a training set: a trained system

= Dataset Part Two: Test set

= Used for testing whether the trained system might work well
= Result after using a test set: accuracy of the trained model

Lecture 10 — Theory of Generalization




Exercises — Explore Testing on Training Dataset

Learning exercise to understand better the theory of generalization — don‘t do this in practice!

score = model.evaluate(X_train, Y_train, verbose=VERBOSE)
i , scorel[0])
, score[l])
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MNIST Data — Testing on Training Dataset — Solution

m 171 10112/60000 ETA: 1s
MemO”Zlng VS. 11552/60000 ETA: 1s

. . 12960/60000 ETA: 1s
Generalization 158460/60660 ETA; 1e

17280/60000 ETA: 1s
ETA: 1s
ETA: 1s
ETA: 1s
ETA: 1s
ETA: 1s
ETA: 1s
ETA: 1s
ETA: 1s
ETA: 1s
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: Os
ETA: 0Os
ETA: Os
ETA: Os
ETA: Os
2s 35us/step

Jsing TensorFlow backend.
‘est score: 0.035654142725043254
‘est accuracy: 0.9916




Mathematical Building Blocks (1)

Unknown Target Function Elements we

f . X N Y not exactly

(need to) know

(ideal fLénction)

]
]
]
]
]
]
]
]
\:/ Elements we
— must and/or
Training Examples should have and
X (x that might raise
( 1 yl)’ i ( N7 yN) huge demands
(historical records, groundtruth data, examples) S
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Mathematical Building Blocks (1) — Our Linear Example

Unknown Target Function 1_ Some pattern eXiStS
f: X =Y
(deal foetion) 2. No exact mathematical

formula (i.e. target function)
Data exists

(____.._..--
w

Training Examples

(X17 yl)’ Tt (XN7 yN)

(historical records, groundtruth data, examples)

(if we would know the exact target function we dont need
machine learning, it would not make sense)

(decision boundaries depending on f) d

Iris-virginica if Z w;x; > threshold

=1 (w; and threshold are

still unknown to us)

d
Iris-setosa if Z w;x; < threshold

=1

d (we search a
h(X) = sign ( ( Z “,371) _ th'r'eshold) heH function similiar

— like a target function)
1=
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Feasibility of Learning — Hypothesis Set & Final Hypothesis

* The ‘ideal function’ will Unkn«;;vn?ggetw;;ﬂon
. . . X —
remain unknown in learning

" |mpossible to know and learn from data

= |f known a straightforward implementation would be better than learning
= E.g. hidden features/attributes of data not known or not part of data

= But ‘(function) approximation’ of the target function is possible
= Use training examples to learn and approximate it
= Hypothesis set 7{ consists of m different hypothesis (candidate functions)

H — {hla - hm}a ‘select one function’ qg: X =Y

that best approximates

Hypothesis Set Final Hypothesis
H={h}; geH g~ f
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Mathematical Building Blocks (2)

Unknown Target Function Elements we

not exactly
f: X =Y

(need to) know

(ideal fLénction)

]
]
]
]
]
]
]
]
\:/ Elements we
— must and/or
Training Examples should have and
X (x that might raise
( 1 yl)’ i ( N7 yN) huge demands
(historical records, groundtruth data, examples) S

Final Hypothesis

g f

Hypothesis Set
H=1{h};, geH

Lecture 10 — Theory of Generalization

17 / 56



Mathematical Building Blocks (2) — Our Linear Example

(decision boundaries depending on f)

H — {hl, cees hm},

(we search a function similiar
like a target function)

d
h(x) = sign ( ( Z uxl) - th'r'eshold) ;h e H

1=1

Final Hypothesis

g=J
d
h(x) = sign ( ( Z ua:l) - th'r'eshold) ;h e H ¥
i=1 .
(activation
function)

input nodes t=04

Hypothesis Set

H = {h}, g c H (trained perceptron model

and our selected final hypothesis)

(Perceptron model — linear model)
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The Learning Model: Hypothesis Set & Learning Algorithm

" The solution tools — the learning model:

1. Hypothesis set H - a set of candidate formulas /models
2. Learning Algorithm A - “train a system‘ with known algorithms

Training Examples

(X]7y1)7 Tt (XNTyN)

Learning Algorithm (‘train a system‘) - Final Hypothesis
1 9=/
I = Qur Linear Example
Hypothesis Set 1. Perceptron Model
H={h}; geH g .
2. Perceptron Learning

Algorithm (PLA)

‘solution tools’
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Mathematical Building Blocks (3)

Unknown Target Function Elements we

f X Y not exactly

(need to) know

(ideal fqinction)

]
]
]
]
]
]
]
]
\:/ Elements we
— must and/or
Training Examples should have and
< (% that might raise
( 1 yl)’ ’ ( N7 yN) huge demands
(historical records, gropndtruth data, examples) S

Learning Algorithm (‘train a system’)

Final Hypothesis

g f

Hypothesis Set

H=1{h};, geH
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Mathematical Building Blocks (3) — Our Linear Example

Unknown Target Function

[ X =Y

(ideal fuinction)

<____..-..-..-

Training Examples

(X17 yl)? Tt (XN7yN)

(historical records, groindtruth data, examples)

A4

Learning Algorithm (‘train a system?)

(Perceptron/tearning Algorithm)

Hypothesis Set

H=1{h};, geH

(Perceptron model — linear model)

Lecture 10 — Theory of Generalization

d 2 3 y
i 10 04 (X153 U1 )5 s (X5 Uy)
2 1011 (training data)
3 1101
4 1111 )
5 00 1-1 _ :
6 0 1 0 "”.G”((Zl:u';.rf) Hu'r.s]mfrf)
-
7 0111
8 00 0-1 (training phase;
Find w; and threshold
(algorithm uses that fit the data)
training dataset)
output
X 0.3 node
Final Hypothesis
g f Yy
(activation
function)

input nodes t=04

(trained perceptron model
and our selected final hypothesis)



Different Models — Hypothesis Set & ‘Degrees of Freedom

Hypothesis Set

H={h}; geH
H = {hl,,hm},

(all candidate functions
derived from models
and their parameters)

h,, is a different hypothesis

= Additionally a change in model parameters of
h,, ..., h,, means a different hypothesis too

Choosing from various model approaches h,, ...,

‘select one function’
that best approximates

Final Hypothesis

g=f

Lecture 10 — Theory of Generalization

{

(e.g. support vector machine model)

output

(activation
function)

input nodes X, (bias)
(representing the threshold)

(e.g. linear perceptron model)

(e.g. artificial neural network model)



Validation Technique — Model Selection Process — Revisited

= Model selection is choosing (a) different types of models or (b) parameter values inside models
= Model selection takes advantage of the validation error in order to decide = ‘pick the best’

Hypothesis Set

H={h}; geH

(set of candidate formulas across models)

= Many different models

(training not on
full data set)

Use validation error to
perform select decisions

= Careful consideration:

= ‘Picked means decided’
hypothesis has already
bias (= contamination)

= Using Dy M times

Final Hypothesis

gm*%f

(test this on unseen data
good, but depends on
availability in practice)

Lecture 10 — Theory of Generalization

DT?"ain

w.r.t. Dr.,i,)

11 1

gﬂ/f

(out-of-sample

DVal

l(vahdatel unbiased 1
estlmates)

\ Evall 'Ualg valM l
(pick ‘best’ = bias) Y(decides model selection)
Hm* E'valm*

D (final real training
(final training on full set, use to get even better

the validation samples too) g out-of-sample)
m *



[Video] Towards Multi-Layer Perceptrons

:

|

_ Connection
~ Weight

[3] YouTube Video, Neural Networks — A Simple Explanation
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Learning Theory Basics

O
O 0
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Feasibility of Learning — Probability Distribution

" Predict output from future input ——
(fitting existing data is not enough) frX—=Y
= |n-sample ‘1000 points’ fit well

= Possible: Out-of-sample >= ‘1001 point’
doesn‘t fit very well

<______-_-_-—

= Learning ‘any target function’ Training Examples
. . . (X]7y1)7"'7(XN7yN)
is not feasible (can be anything)
= Assumptions about ‘future input’ e
= Statement is possible to Pon X
define about the data outside _
. (which exact
the |n‘Samp|e data (Xlayl)a---a(XvaN) X = (ﬂ?l,...jxd)b probability
is not important,
= All s;amples (also future ones) are - o it ehould ot b
derived from same ‘unknown probability” distribution P on X completely
random)

Statistical Learning Theory assumes an unknown probability distribution over the input space X

Lecture 10 — Theory of Generalization




Feasibility of Learning — In Sample vs. Out of Sample

" Given ‘unknown’ probability P on X
= Given large sample N for (x,,4,), ... (X, ¥y)
= There is a probability of ‘picking one point or another’
= ‘Error on in sample’is known quantity (using labelled data): Em (h)
= ‘Error on out of sample’is unknown quantity: F . (h)
" |n-sample frequency is likely close to out-of-sample frequency E tracks E,;

depend on

which E (h)

hypothesis h Eout (h) w
outof M 00000
different ones " W ‘in sample’
00 ol"
ict!
. ‘ use for predict! use E, (h) as a proxy thus the other
‘out of sample’ way around in learning

H = {%1; --whm}; Eout (h’) ~ Ezn(h’)

I = Statistical Learning Theory part that enables that learning is feasible in a probabilistic sense (P on X)

Lecture 10 — Theory of Generalization



Feasibility of Learning — Union Bound & Factor M

The union bound means that (for any countable set of m ‘events’) the probability that at least one
of the events happens is not greater that the sum of the probabilities of the m individual ‘events’

Think if E;, deviates from E

" Assuming no overlaps in hypothesis set

= Apply mathematical rule ‘union bound’ Final Hypothesis
g=f

= (Note the usage of g instead of h, we need to visit all)

out With more than tolerance € it is a ‘bad event’ in order to apply union bound

Pr[|E,(9)—E,(9) | >€e] <=Pr [| E () —-E,,(h)|>e€
‘visiting M
or ‘ Ez-,.,,(hz) — Eom(hz) | > € ... different
or | E, (hu)—E,, (hy) [ >€ ] nypothests

M
Pr[| E,(9) = E,.(9) | >¢] <= Y Pr[|E,(hn)—E,,(hn) | > €]

m=1

M 2N fixed quantity for each hypothesis
Pr[ | E. (9)—E,.(9) |>€e] <= 226 ‘ obtained from Hoeffdings Inequality
m=1

B V7 —2e2N problematic: if M is too big we loose the link
Pr [ ‘ Ei” ((}) a Eouf ((}) ‘ ~ € ] <= 2Me between the in-sample and out-of-sample

Lecture 10 — Theory of Generalization



Feasibility of Learning — Modified Hoeffding’s Inequality

= Errorsin-sample E. (g) track errors out-of-sample E_.(9)
= Statement is made being ‘Probably Approximately Correct (PAC)’
= Given M as number of hypothesis of hypothesis set H 4] Valiant, A Theory
= ‘Tolerance parameter’in learning € of the Learnable’, 1984

= Mathematically established via ‘modified Hoeffdings Inequality”
(original Hoeffdings Inequality doesn‘t apply to multiple hypothesis)
‘Approximately’ ‘Probably’

Pr [| E,(9) — E,.(9) | >¢] <= 2Me™¥

‘Probability that E,, deviates from E_ , by more than the tolerance € is a small quantity depending on M and N’

out

* Theoretical ‘Big Data’ Impact = more N = better learning
= The more samples N the more reliable will track £, (g) E _.(g) well
= (But: the ‘quality of samples’ also matter, not only the number of samples)

Statistical Learning Theory part describing the Probably Approximately Correct (PAC) learning

Lecture 10 — Theory of Generalization




Exercises — Explore Train on Test & Test on Train

I = Learning exercise to understand better the theory of generalization — don‘t do this in practice!

history = model.fit(X test, Y_test, batch size=BATCH SIZE, epochs=NB EPOCH, verbose=VERBOSE, validation_ split = VAL_SPLIT)

score = model.evaluate(X train, Y _train, verbose=VERBOSE)
print(“Test score:", scorel[0])
print('Test accuracy:', score[l])

Lecture 10 — Theory of Generalization



MNIST Data — Testing on Training Dataset (20 Epochs)

26176/60000 - ETA: 1s

u Testing Dataset 27584/60000 - ETA: 1s

- ETA: 1s
10000 samples C ETA s
. [} - ETA: OS
NOW trammg - ETA: 0Os
- ETA: 0s
_ - ETA: Os
= Training Data _ ETA: o5
- ETA: Os
60000 samples - ETA: os
: - ETA: Os
now testing _ ETA: 05
- ETA: Os
- ETA: Os
- ETA: 0s
- ETA: Os
- ETA: Os
- ETA: Os
- ETA: Os
- ETA: 0s
- ETA: Os
.1 - ETA: 0Os
ARANANM/ARONAANA .28 . 3kus/step
Using TensorFlow backend.
Test score: 0.2172071209657685
Test accuracy: 0.94875

Pr [ ‘ Ein (g) o Eout (q) ‘ > € } <: 2;\[6_2621\7



MNIST Data — Testing on Training Dataset (200 Epochs)

» Testing Dataset 19040/60060
12864/60000

14272/60000

10000 samples 15880/ 0000
17088/60000

M M 18496/60000

now training 19504/60000
21312/60000

22752/60000

24192/60000

" Traini Ng Data 25632/60000

27072/60000

60000 samples 512
Sa p 31392/60000

B 32832/60000

34272/60000

nOW teStIng 35712/60000
37152/60000

38592/60000

- N um be r N 40032/60000

41472/60000

. . 42912/60000

44352/60000

affects training pESETR
47232/60000

48672/60000

performance So112/60000

51552/60000

~ 0 53024/60000
( was 9 8 A) 54464/60000
’ 55904/60000

57344/60000

Epochs 200) 58816/60000 - ETA:
[NATATATAWANATATATA] " 1 JQec AW ic /r+c\.v\
Using TensorFlow backend.

Test score: 0.39456051169445205
Test accuracy: 0.95465

Pr [ ‘ Ein (g) o Eout (q) ‘ > € } <: 2;\[6_2621\7




MNIST Data — Testing on Training Dataset (400 Epochs)

15872/60000
17312/60000
18752/60000
20160/60000
21536/60000
22976/60000
24384/60000
25792/60000
27232/60000
28672/60000
30112/60000
31552/60000

....................... - ETA: 1s
..................... - ETA: 1s
..................... - ETA: 1s

.................... - ETA: 1s
.................... - ETA: 1s
................... - ETA: 1s
.................. - ETA: 1s
................. - ETA: 1s
................. - ETA: 1s
............... - ETA: 1s
............... - ETA: 1s
............... - ETA: 1s

= Testing Dataset
10000 samples
now training

*= Training Data

60000 samples
now testing

32960/60000
34400/60000
35808/60000
37248/60000
38656/60000
40096/60000
41536/60000
42944/60000
44384/60000
45824/60000
47232/60000
48672/60000
50112/60000
51552/60000
52960/60000
54368/60000
55808/60000
57216/60000
58624/60000
60000/60000

Using lensorklow backend.
0.46486433204362193

Test score:

1 e e e e e e e e e e e e e e e e e e e e e e e

—

L | | | (| (| (| | | | | O [ A

Test accuracy: 0.9536333333333333

Pr [ ‘ Ein (g) o Eout (q) ‘ > € } <: 2;\[6_2621\7

- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- ETA:
- 2s 35us/step

Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os
Os




MNIST Data — Testing on Training Dataset (800 Epochs)

= Testing Dataset

HCE)

loss: 0.0126 - acc: 0.9922

- ETA: 0s - loss: 0.0106 - acc: 0.9980

loss: 0.0148 - acc: 0.9972

10000 Samples s E$ﬁ gz - loss: 0.0140 - acc: 0.9976

ETA: 0s - loss: 0.0111 - acc: 0.9980

8000/8000 - 0s 30us/step - loss: 0.0108 - acc:

nNowW traln | ng 19712/60000

21088/60000
22464/60000
23840/60000

" Training Data 25216/60600

26624/60000
28032/60000

60000 samples Fomgete

now testing

Test score: 0.5250241714548276

‘Using TensorFlow backend.
Test accuracy: 0.9528833333333333

0.9980 - val_loss: 0.2866 - val_acc: 0.9725



Mathematical Building Blocks (4)

Unknown Target Function

f: X =Y

(ideal fqinction)

<____.._.._..-

Training Examples

(X17y1)7 Tt (XN7 yN)

(historical records, gropndtruth data, examples)

Learning Algorithm (‘train a system’)

Hypothesis Set
H={h}; geH

Lecture 10 — Theory of Generalization

Probability Distribution Elements we
not exactly
P on X (need to) know

X = (;g e T )<_ constants
1 d in learning

Elements we
must and/or
should have and
that might raise
huge demands
for storage

Final Hypothesis

g f
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Mathematical Building Blocks (4) — Our Linear Example

(infinite M decision boundaries depending on f) Probability Distribution

Pon X

N

T, )e—

Is this point very likely from the same distribution or just noise?

We assume future points are taken from the
same probability distribution as those that
‘ we have in our training examples

Training Examples

(X17 yl)? Tt (XN7 yN)

Is this point very likely from the same distribution or just noise?
(we help here with the assumption for the samples) (we do not solve the M problem here)
—2e2N
Pr [| E (9)—FE,, (9) | >¢] <= 2Me

(counter example would be for instance a random number generator, impossible to learn this!)

out
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Statistical Learning Theory — Error Measure & Noisy Targets

"= Question: How can we learn a function from (noisy) data?

= ‘Error measures’ to quantify our progress, the goalis: h ~ f
= Often user-defined, if not often ‘squared error”:

e(h(x), f(x) = (h(x) — f(x))? [

07

u { H _ H {
E.g. ‘point-wise error measure (e.g. think movie rated now and in 10 years from now)

= ‘(Noisy) Target function’is not a (deterministic) function

= Getting with ‘same x in‘ the ‘same y out’ is not always given in practice
= Problem: ‘Noise’ in the data that hinders us from learning

= |dea: Use a ‘target distribution’

instead of ‘target function’ Unknown T‘jfEE‘D“”E““D” P(y|x)
target function f : X — Y bplusnoise

= E.g.credit approval (yes/no) -

(ideal function)

= Statistical Learning Theory refines the learning problem of learning an unknown target distribution

Lecture 10 — Theory of Generalization



Mathematical Building Blocks (5)

Unknown Target Bustetionion P Probability Distribution Elements we
] (y ‘ X) not exactly
target function f . X — Y plus noise P on X (need to) know
. " L.
(ideal function) l
]
]
' ‘constants’
] pr— b
: X (xl 7t :Ed) X in learning
]
]
]
H Elements we
. . " - must and/or
Training Examples Error Measure should have and
(X17y1)7 ey (XN7 yN) ﬁB(X)@ that might raise
huge demands

(historical records, gropndtruth data, examples)

Learning Algorithm (‘train a system’) Final Hypothesis
A < g~ f

for storage

Hypothesis Set
H=1{h};, geH

Lecture 10 — Theory of Generalization
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Mathematical Building Blocks (5) — Our Linear Example

= |terative Method using (labelled) training data (X,,¥, ), -.-

(one point at a time is picked)

1. Pick one misclassified

training point where:

sign(w'x,) # vy,

Error Measure

87

(a)

2. Update the weight vector: (a) addinga vector or
(b) subtracting a vector

W< W+ Uy X

(y, is either +1 or -1)

= Terminates when there are [ tror measure

no misclassified points

07

(converges only with linearly seperable data)

Lecture 10 — Theory of Generalization

<
i

+1

(X Uy

W + yX



Training and Testing — Influence on Learning

= Mathematical notations

* Testingfollows:  Pr [ | E, (9) — E,,(9) | >¢] <= 2 eV
(hypothesis clear)

* Trainingfollows:  pr [ | E (¢)—E, (¢) | >¢] <= I N[~ 2" N

(hypothesis search) (e.g. student exam training on examples to get E,_,down’, then test via exam)
" Practice on ‘training examples’

= Create two disjoint datasets

Training Examples

= One used for training only (X5 9, )s oo (X Y )

(aka tralnlng Set) (historical records, groundtruth data, examples)

= Another used for testing only
(aka test set)

" Training & Testing are different phases in the learning process

= Concrete number of samples in each set often influences learning
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Theory of Generalization — Initial Generalization & Limits

= |Learning is feasible in a probabilistic sense
= Reported final hypothesis — using a ‘generalization window‘on F_ . (g)
= Expecting ‘out of sample performance’ tracks ‘in sample performance’
= Approach: . (g)actsasa ‘proxy for E_,(g)

E,.(9)~E, (9)

This is not full learning — rather ‘good generalization’ since the quantity E_(g) is an unknown quantity

= Reasoning
Final Hypothesis

= Above condition is not the final hypothesis condition: g f

= More similiar like £ | (g) approximates O
(out of sample error is close to 0 if approximating f)

= I (g) measures how far away the value is from the “target function’
= Problematic because Eout (g) is an unknown quantity (cannot be used...)
= The learning process thus requires ‘two general core building blocks’
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Theory of Generalization — Learning Process Reviewed

= ‘Learning Well’
= Two core building blocks that achieve £/ (g) approximates 0

" First core building block
= Theoretical result using Hoeffdings Inequality E, ., (9) ~ Em (9)
= Using Eout (g) directly is not possible — it is an unknown quantity

= Second core building block (try to get the ‘in-sample’ error lower)
= Practical result using tools & techniques to get . (g) =~ 0
= e.g. linear models with the Perceptron Learning Algorithm (PLA)
= Using E. (g) is possible —it is a known quantity — ‘so lets get it small’
= Lessons learned from practice: in many situations ‘close to 0 impossible

= E.g. remote sensing images use case of land cover classification

Full learning means that we can make sure that E_,(g) is close enough to E, (g) [from theory]
Full learning means that we can make sure that E, (g) is small enough [from practical techniques]
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Complexity of the Hypothesis Set — Infinite Spaces Problem

Pr [ | E,(9) = E,.(9) | >¢] <= 2Me> "

theory helps to find a way to deal
with infinite M hypothesis spaces

" Tradeoff & Review
= Tradeoff between €, M, and the ‘complexity of the hypothesis space H’
= Contribution of detailed learning theory is to ‘understand factor M’

= M Elements of the hypothesis set . M elements in H here
= Ok if N gets big, but problematic if M gets big = bound gets meaningless
= E.g. classification models like perceptron, support vector machines, etc.
= Challenge: those classification models have continous parameters
= Consequence: those classification models have infinite hypothesis spaces
= Aproach: despite their size, the models still have limited expressive power

= Many elements of the hypothesis set H have continous parameter with infinite M hypothesis spaces
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Factor M from the Union Bound & Hypothesis Overlaps

r [ [ E,(9)—E,.(9)|>¢] <=Pr [| E, () —E, () ]|>e€ assumes no
overlaps, all
or | E. (he) —E, ,(hs) | >€ ... probabilities
happen
or | E, (ha)—E,, (har) | >€ ] disjointly

r [ ‘ Em (g) — Eout(g) ‘ > € ] <= QJ\"fe_QEzN takes no overlaps of M hypothesis into account

" Union bound is a ‘poor bound’, ignores correlation between h

= Qverlaps are common: the interest is shifted to data points changing label

| B, (M) = E, () [ = | B, (hs) = E,.(h2) | Geiororeaucem

out Unimportant’ ‘important’

»\»

change in areas change in data label

= Statistical Learning Theory provides a quantity able to characterize the overlaps for a better bound
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Replacing M & Large Overlaps

(Hoeffding Inequality) (Union Bound) (towards Vapnik Chervonenkis Bound)

(valid for 1 hypothesis) (valid for M hypothesis, worst case) (valid for m (N) as growth function)

" Characterizing the overlaps is the idea of a ‘growth function’

* Number of dichotomies: my (N) = maxy x..x | H(X, Xy, Xy
Number of hypothesis but
on finite number N of points

= Much redundancy: Many hypothesis will reports the same dichotomies

I = The mathematical proofs that m,(N) can replace M is a key part of the theory of generalization
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Complexity of the Hypothesis Set — VC Inequality

Pr[| E,(9) — E,.(9) | >€] <= 2Me™>¥

out
mH(N) — maxxl Koy yee s Xy |H(X17X27 e XN)|

= Vapnik-Chervonenkis (VC) Inequality
= Result of mathematical proof when replacing M with growth function m
= 2N of growth function to have another sample (2x E_(h), no E,,.(h))

Pr[| E, (9)—E,.(9) | >e] <= 4my(2N)e /8N

(Al

(characterization of generalization)

= |n Short —finally : We are able to learn and can generalize ‘ouf-of-sample’

The Vapnik-Chervonenkis Inequality is the most important result in machine learning theory
The mathematial proof brings us that M can be replaced by growth function (no infinity anymore)
The growth function is dependent on the amount of data N that we have in a learning problem
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Complexity of the Hypothesis Set — VC Dimension

= Vapnik-Chervonenkis (VC) Dimension over instance space X

= VCdimension gets a ‘generalization bound’ on all possible target functions

Issue: unknown to ‘compute’ — VC solved this using the growth function on different samples

(‘generalization error’) 5 (g)
A out
E
B, Euld)
s . L A ‘ L4
--- model '. - “first sample’

complexity . 4
- W
- - - -

(“training error’)

E,.(h)

‘out of sample’ . .

" [} E ( ) p -

/ ° ; g ‘ ‘
' o n second sample
1) °

L g
; VC dimension d,, idea: ‘first sample’ frequency
d VC close to ‘second sample’ frequency

= Complexity of Hypothesis set H can be measured by the Vapnik-Chervonenkis (VC) Dimension d,
= Ignoring the model complexity d, . leads to situations where E; (g) gets down and E_,(g) gets up
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Different Models — Hypothesis Set & Model Capacity

Hypothesis Set

H={h}; geH
H — {hl,,hm},

(all candidate functions
derived from models
and their parameters)

Choosing from various model approaches h,, ...,
h,, is a different hypothesis

Additionally a change in model parameters of
h,, ..., h,, means a different hypothesis too

The model capacity characterized by the VC
Dimension helps in choosing models

Occam’s Razor rule of thumb: ‘simpler model
better’ in any learning problem, not too simple!

‘select one function’ Final anothgsis
that best approximates g = f
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(e.g. support vector machine model)

output

(activation
function)

input nodes X, (bias)
(representing the threshold)

(e.g. linear perceptron model)

(e.g. artificial neural network model)



Validation Technique — Model Selection Process — Revisited

= Model selection is choosing (a) different types of models or (b) parameter values inside models
= Model selection takes advantage of the validation error in order to decide = ‘pick the best’

Hypothesis Set

H={h}; geH

(set of candidate formulas across models)

= Many different models

(training not on
full data set)

Use validation error to
perform select decisions

= Careful consideration:

= ‘Picked means decided’
hypothesis has already
bias (= contamination)

= Using Dy M times

Final Hypothesis

gm*%f

(test this on unseen data
good, but depends on
availability in practice)
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AUDIENCE QUESTION

What could happen to Overfitting and we try to stop it?
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Prevent Overfitting for better ‘ouf-of-sample’ generalization

[5] Stop Overfitting, YouTube
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Appendix A — SSH Commands JURECA
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Appendix A — SSH Commands JURECA

" salloc --gres=gpu:4 --partition=gpus --nodes=1 --
account=training1904 --time=00:30:00 --
reservation=prace_ml_gpus_tue

* module --force purge;
module use /usr/local/software/jureca/OtherStages
module load Stages/Devel-2018b GCCcore/.7.3.0
module load TensorFlow/1.12.0-GPU-Python-3.6.6
module load Keras/2.2.4-GPU-Python-3.6.6

= srun python PYTHONSCRIPTNAME
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